Accepted Manuscript

Apparent kinetics of the water-gas-shift reaction in biomass gasification using ash-layered olivine as catalyst

Joanna Kryca, Juraj Priscak, Joanna Łojewska, Matthias Kuba, Hermann Hofbauer

PII:	S1385-8947(18)30599-0
DOI:	https://doi.org/10.1016/j.cej.2018.04.032
Reference:	CEJ 18832
To appear in:	Chemical Engineering Journal
Received Date:	28 November 2017
Revised Date:	1 April 2018
Accepted Date:	6 April 2018

Please cite this article as: J. Kryca, J. Priscak, J. Łojewska, M. Kuba, H. Hofbauer, Apparent kinetics of the watergas-shift reaction in biomass gasification using ash-layered olivine as catalyst, *Chemical Engineering Journal* (2018), doi: https://doi.org/10.1016/j.cej.2018.04.032

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Apparent kinetics of the water-gas-shift reaction in biomass gasification using ash-layered olivine as catalyst

Joanna Kryca¹, Juraj Priscak², Joanna Łojewska³, Matthias Kuba^{2,4,*}, Hermann Hofbauer⁴

 ¹Institute of Chemical Engineering of the Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice, Poland
²Bioenergy 2020+ GmbH, Wiener Straße 49, A-7540 Güssing, Austria
³Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland
⁴TU Wien, Institute of Chemical, Environmental and Bioscience Engineering, Getreidemarkt 9/166, 1060 Vienna, Austria

*Corresponding author: matthias.kuba@bioenergy2020.eu

+ 43 (0) 3322 42606-156

Abstract

Substitution of fossil fuels for production of electricity, heat, fuels for transportation and chemicals can be realized using biomass steam gasification in a dual fluidized bed (DFB).

Interaction between biomass ash and bed material in a fluidized bed leads to transformation of the bed particle due to enrichment of components from the biomass ash resulting in the development of ash layers on the bed particle surface. These ash-rich particle layers enhance the catalytic activity of the bed material regarding the water-gas-shift reaction and the reduction of tars. Download English Version:

https://daneshyari.com/en/article/6579246

Download Persian Version:

https://daneshyari.com/article/6579246

Daneshyari.com