Accepted Manuscript

Synthesis and characterization of highly selective and sensitive Sn/SnO₂/N-doped carbon nanocomposite (Sn/SnO₂@NGC) for sensing toxic NH₃gas

Abdullha M. Al-Enizi, Mu. Naushad, Ala'a H. Al-Muhtaseb, Rukshana, Saad M. Alshehri, Z.A. Alothman, Tansir Ahamad

PII: S1385-8947(18)30497-2

DOI: https://doi.org/10.1016/j.cej.2018.03.138

Reference: CEJ 18745

To appear in: Chemical Engineering Journal

Received Date: 4 January 2018 Revised Date: 15 March 2018 Accepted Date: 24 March 2018

Please cite this article as: A.M. Al-Enizi, Mu. Naushad, A.H. Al-Muhtaseb, Rukshana, S.M. Alshehri, Z.A. Alothman, T. Ahamad, Synthesis and characterization of highly selective and sensitive Sn/SnO₂/N-doped carbon nanocomposite (Sn/SnO₂@NGC) for sensing toxic NH₃gas, *Chemical Engineering Journal* (2018), doi: https://doi.org/10.1016/j.cej.2018.03.138

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Synthesis and characterization of highly selective and sensitive $Sn/SnO_2/N$ -doped carbon nanocomposite $(Sn/SnO_2@NGC)$ for sensing toxic NH_3 gas

Abdullha M. Al-Enizi^a, Mu. Naushad*^a, Ala'a H. Al-Muhtaseb^b, Rukshana^c, Saad M.

Alshehri^a, Z.A. Alothman^a, Tansir Ahamad^a*

^aDepartment of Chemistry, College of Science, Bld#5; King Saud University, Riyadh-11451, Saudi Arabia ^bDepartment of Petroleum and Chemical Engineering, Faculty of Engineering, Sultan Qaboos University, Muscat, Oman

^cRam Chameli Chadha Vishvas Girls' College (P.G.), Ghaziabad, Uttar Pradesh, India. *Corresponding author: tahamed@ksu.edu.sa (T. Ahamad), Contact No: 00966-11-4675971 **Abstract**

of Sn/SnO₂ nanoparticles synthesis present study, a facial embedded in nitrogen doped carbon based nanocomposites has been disclosed which was used as a fast and high-performance NH₃ gas sensor. The prepared nanocomposite was characterized by various analytical technique including XRD. FESEM, XPS. FTIR. TGA/DTA, Raman, TEM/HRTEM and The presence of both Sn and SnO₂ nanoparticles in carbon matrix are supported by FTIR, Raman and XRD. The XRD analysis showed the tetragonal crystal phase of SnO₂ nanoparticles, and the BET results revealed 148.9 m² g⁻¹ surface area of Furthermore, the nanocomposite. SEM image showed that Sn and SnO₂ nanoparticles were well dispersed in the nitrogen doped carbon matrix. The fabricated sensor was characterized against various concentration of NH₃ and the results indicated that the prepared sensor showed excellent responses at 65°C working temperature, with 300 ppm concentration of NH₃ and the sensitivity was observed 172.70. Additionally, the fabricated sensor also showed quick response and the recovery time of 60 s and 55 s, respectively. The fabricated sensor with its quick response and recovery time, good repeatability, excellent selectivity, and slight humidity effects has the potential and could be used as NH₃ sensor on industrial scale.

Key words: Nanocomposite; Gas sensor; NH₃; Carbon matrix

Download English Version:

https://daneshyari.com/en/article/6579375

Download Persian Version:

https://daneshyari.com/article/6579375

<u>Daneshyari.com</u>