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Natural convection of non-Fourier fluid of the single-phase-lagging (SPL) type between two horizontal
walls (Rayleigh-Benard) has been investigated. These fluids possess a relaxation time, reflecting the delay
in the response of the heat flux and the temperature gradient with respect to one another. By invoking
the role of the eigenvectors to detect and quantify short-time behavior, transient growth of energy of dis-
turbances has been illustrated. The energy of the perturbations is introduced in terms of the primary vari-

ﬁengrqu ables as a disturbance measure in order to quantify the size of the disturbance. In contrast to linear
NZE(—)F(;J&rin stability analysis, one does not assume exponential time dependence, but monitor the evolution of initial

conditions in the pre- and post-critical ranges of Rayleigh numbers. Different growth functions for differ-
ent levels of non-Fourier effects have been found, which should be thought of as the envelope of the
energy evolution of individual initial conditions. Also, it is found that nonlinearities are not required
for the energy growth. Energy growth can occur if non-orthogonal eigenfunctions are available. A funda-
mental implication of the non-normality is that there can be significant energy growth in the energy of
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perturbations even if the flow is stable.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Generally, conduction is considered to be a heat transfer pro-
cess in which heat is transported in a diffusive way, and is de-
scribed by Fourier law. When combined with the conservation of
energy, Fourier law results in a parabolic equation for the temper-
ature field. It means that if a sample is subjected to a thermal dis-
turbance, the disturbance is felt instantaneously at all points of the
sample. Fundamentally, Fourier law is not realistic since a distur-
bance wave in the temperature will travel at a finite speed as it
is transferred by molecular interaction [1]. This behavior is charac-
terized by the Maxwell-Cattaneo or Cattaneo-Vernotte (C-V)
equation proposed by Cattaneo [2] and Vernotte [3], which in-
cludes a transient term accounting for the finite thermal relaxation
time of the medium. This is the time required for the heat flux to
relax to a new (stable) steady state following a perturbation in
the temperature gradient, establishing a hyperbolic heat (second
sound wave) response. It is recalled that what is meant by the first
sound wave is a propagated disturbance of pressure (or density)
through a continuous medium such as air or water. Hearing is
the sense of first sound wave perception. The second sound is a heat
transfer mechanism describing the propagation of heat as a tem-
perature wave.

In practice, most heat transfer problems involve materials with
relaxation times on the order of pico- or 10-12 s [4]. In this case,
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the C-V equation collapses onto the classical Fourier model. How-
ever, the recent interest in second sound is due to its potential
application in some situations such as the heat transfer in drying
sand [5], cooling or heating in stars [6], and in skin burns [7], where
the Fourier law is not adequate to describe the heat transfer pro-
cess. Second sound could also be used in modeling of heat trans-
port in a nuclear fuel rod in a light water reactor [8], and in
phase changes [9]. Different models exist to describe non-Fourier
heat conduction. Experimental evidence of the wave nature of heat
propagation in processed meat was demonstrated by Mitra et al.
[10]. The value of the thermal relaxation time of processed bologna
meat was found to be on the order of 15s, which obviously re-
quires the use of the hyperbolic heat conduction model for such
a biological material. Antaki [11] used a dual-phase-lag (DPL) mod-
el for non-Fourier heat conduction to offer a new interpretation for
the experimental evidence in the experiments of Mitra et al. [10]
with processed meat. In the DPL model, materials possess a relax-
ation time and a retardation time, reflecting the delay in the re-
sponse of the heat flux and the temperature gradient with
respect to one another. Unlike the DPL model, in the single-
phase-lag model (SPL), materials possess only a relaxation time
(the retardation time is zero in this case). Xu et al. [12] developed
a computational approach to examine the non-Fourier heat trans-
fer process in skin tissue. They employed the DPL model to study
bioheat transfer. Non-Fourier effect has been examined in other
applications such as welding [13], laser industry [14,15], biother-
momechanics of skin [16], and bio-heat transfer during magnetic
hyperthermia treatment [17].
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Nomenclature

gradient operator
A Laplacian operator

14 velocity vector

P pressure

p density

g gravity acceleration

e, unit vector in the z direction

u viscosity

Cp specific heat

T temperature

Q heat flux vector

T relaxation time

D dimensionless pressure deviations from the base state
0 dimensionless temperature deviations from the base
state

v(u, w) dimensionless velocity vector
dimensionless heat flux vector

D length scale (distance between plates)

K thermal diffusivity

k wavenumber in x direction

C Cattaneo number

J V-q

Pr Prandtl number

Ra Rayleigh number

s time evolution

n modenumber

10} frequency

K kinetic energy of the perturbations
Vi perturbation velocity

% cell volume

dKg/dt  weighted kinetic energy rate

E energy norm

() integration over z € [0,1]

G maximum possible energy growth
{si} eigenvalues

(E;} eigenvectors

sup supremum

Subscripts and abbreviations

base fluid

intersection

minimum

threshold

critical

Fourier

partial differentiation wrt z
partial differentiation wrt t
nanoparticle

nanofluid

"~ NTmOo T3 W
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Using analytical [18,19] and numerical approaches [17,20-30],
non-Fourier effects have been investigated in different geometries
such as irregular geometries [21], fins [31], crack tip [32], slabs
[33,34], spherical [35] and cylindrical geometry [36]. Also, different
boundary conditions are studied such as on-off heat flux boundary
condition [37], periodic surface thermal disturbance [19], and axi-
symmetric surface sources [38].

Regarding non-Fourier heat conduction in fluids, the first exper-
imental evidence was the detection of the second sound wave
(thermal wave) in superfluid helium (He II) at low temperatures
(T<2.2K) [39]. Superfluid helium exhibits outstanding properties
such as an extremely high thermal conductivity and the ability to
flow through extremely narrow channels without noticeable pres-
sure loss. Shimazaki et al. [40] investigated experimentally tran-
sient heat transport phenomena in He II. Their results show that
at the lower temperatures, T< 1.9 K, the transported energy in
the second sound mode becomes more efficient (low temperature
phenomenon). Zhang [41] studied numerically the transient ther-
mal wave heat transfer in He II, using the classical C-V thermal
wave equation.

Using Maxwell-Cattaneo (or Maxwell-Cattaneo-Fox) heat law,
Straughan et al. [42] investigated convective stability in the Benard
problem. The problem was modeled using the Jaumann derivative
of Fox [43] in the constitutive heat equation, and adopting the
Boussinesq approximation in the buoyancy term in the momentum
equation. Puri et al. [44] studied non-Fourier heat conduction using
the MCF model for the Stokes’ first and second problems. The finite
thermal relaxation time was found to affect both the temperature
and the velocity fields, but this influence is not always consistent.
It tends to increase the amplitude of both of these fields under
some cases and to decrease it under other cases. Later, Puri et al.
[45] used the Maxwell-Cattaneo-Fox (MCF) model to analyze the
non-Fourier heat conduction effects in Stokes’ first problem for a
dipolar fluid. They found that increasing the relaxation time re-
duces the velocity in heating and increases the velocity in cooling.

The temperature predicted by the MCF model is greater than that
predicted by Fourier heat law. Note that dipolar fluids are special
cases of non-Newtonian fluids with deformable microstructure,
consisting of such entities as bubbles, atoms, particulate matter,
ions or other suspended bodies.

More recently, Ibrahem et al. [46] studied the nonclassical heat
conduction effects in Stokes’ second problem of a micropolar fluid,
by examining the influences of the thermal relaxation time on
angular velocity, velocity field, and temperature. Micropolar fluids
possess a microstructure that renders the stress tensor non-sym-
metric. These fluids consist of randomly oriented particles sus-
pended in a viscous medium such as dust, dirt, ice or raindrops,
or other additives. Pranesh et al. [47] studied the Rayleigh-Bénard
magneto convection in a micropolar fluid. Using Cattaneo law, Pra-
nesh analyzed the onset of convection. The classical Fourier flux
law overpredicts the critical Rayleigh number compared to that
predicted by the non-classical hyperbolic law.

In addition, non-Fourier effect can be important in nanofluids
[48]. These fluids are solutions consisting of a base fluid solvent,
containing a small volume fraction (1-5%) of nanoparticles (NPs)
of size of O(1-100 nm). The base fluids can be water and organic
fluids such as ethanol and ethylene glycol. The NPs can be the oxi-
des of aluminum and silicon, as well as metals such as copper and
gold [49,50]. NFs allow for substantial enhancement in conductive
heat transfer, as much as 40% increase in thermal conductivity
[49,51,52], despite the low volume fraction of the NPs. On the other
hand, conventional particle-liquid suspensions require high con-
centrations (>10%) of particles to achieve such enhancement. In
practice, rheological and stability problems precluded the wide-
spread application of high concentration suspensions. This makes
NFs a valuable fluid for different industrial applications, especially
in processes where cooling is of primary concern. Recently, there is
an increasing focus on the convective properties of NFs in the liter-
ature. The presence of convection term is expected to lead to com-
plex physical behavior [53]. One advantage that a fluid containing
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