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H I G H L I G H T S

• 3D NPC@Si microsphere is prepared via high voltage sputtering process.

• The void space alleviates the drastic volume expansion of silicon.

• 3D NPC@Si exhibits high performance for lithium-ion batteries.
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A B S T R A C T

Various kinds of efforts have been devoted to ameliorate the serious volume-expansion effect and low electron
conductivity of silicon-based materials in lithium ion batteries. Here, we report a facile high voltage sputtering
process to prepare three-dimensional hierarchical porous nitrogen-doped carbon coated Si microsphere to sig-
nificantly improve the lithium storage performance. The structure and morphology of the as-obtained samples
are characterized by X-ray diffraction, transmission electron microscope and scanning electron microscope. The
results indicate that the as-prepared composite is composed of silicon nanoparticles (∼100 nm) coated with
conductive thin carbon layer (∼8.5 nm). The composite shows excellent lithium storage performance with a
reversible capacity of 1565 mAh g−1 after 100 cycles at a current density of 0.5 A g−1, as well as a long cycling
performance at the high current density of 2 A g−1. The facile preparation process and highly silicon-loading
(∼78%) makes the prepared material be a great potential application in lithium-ion batteries.

1. Introduction

In recent years, lithium-sulfur and lithium-air batteries have been
paid much attention [1–4]. In addition, sodium ion batteries and li-
thium-nitrogen batteries are also developing rapidly [5,6]. For tradi-
tional lithium ion battery (LIB), graphite cannot meet the needs of high
energy density completely. Silicon has been regarded as one of the next
generation anode materials [7], because of its high theoretical capacity
(ca. 3579mAh g−1, Li15Si4), 10 times more than graphite anodes (ca.

372mAh g−1); Actually, the silicon anode also possesses a low and
remarkable working voltage (∼0.4 V vs. Li/Li+); Besides, it is cheap
and abundant in the earth; Meanwhile, it can reduce the safety concerns
of lithium deposits. The above mentioned advantages of silicon make it
a prospective material for high energy-storage, whereas, the silicon
particles are subject to large volume changes during charging and dis-
charging, leading to material pulverization and electronic contact
failure [8]. In addition, the routine electrolyte is not stable when the
potential is below 1 V vs Li+/Li and form an unstable solid electrolyte
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interphase (SEI) on the silicon surface, which can crack during volume
variations and expose bare silicon [9]. Which leading to a serious sta-
bility problems as an increasing number of SEI formed on newly ex-
posed silicon surfaces, rapidly plugging the electrode pores and redu-
cing the capacity of the batteries [10].

To overcome these technical bottlenecks, a large number of research
teams reported various strategies to improve lithium storage perfor-
mance of silicon anodes. One strategy is to downsize of silicon to mi-
cron or nanoscale [11,12], such as silicon nanoparticles (Si NPs)
[13–15], silicon nanowires [16,17], silicon nanospheres [18,19], and
double-walled silicon nanotubes [11,20]. Thanks to small particle sizes
and available void space, the particles of silicon nanostructures can
effectively cushion the stress of volume changes during the lithiation/
delithiation process. Another approach is that the silicon is tightly
embedded in the matrix [11,21,22], which possesses superior con-
ductivity and mechanical properties, such as graphene-encapsulated
silicon foam [23], silicon/single-walled carbon nanotube composite
[24], silicon/graphene nanosheets [25,26], silicon/porous or hollow
carbon [21,27], and silicon/carbon nanotubes [11,28–30]. These si-
licon-carbon composites not only enhance the electronic conductivity of
silicon, but also adjust the expansion effect of silicon anode and con-
duce to form a stable SEI layer. However, these efforts are suffering
from the low silicon loading and/or expensive production cost. In
particular, in many of the reported silicon/carbon composites, the
majority of silicon content is below 75% [11,21,24,25,27]. Further-
more, by introducing N, P, S, etc. heteroatom dopants can alter the
band gap and/or surface property to improve the electrochemical ac-
tivity of the material [31,32]. As well known, metal–organic frame-
works (MOFs) are belong to a crystalline porous materials [33]. Among
them, the zeolitic imidazolate framework (ZIF-8) is a good candidate
for the synthesis of high specific surface area nitrogen doped porous
carbon [34,35]. However, these previous studies mainly focused on
these strategies respectively, rather than taking them into considera-
tion. In view of this, it is expected that utilization of silicon embedded
heteroatom doped porous carbon in conjunction with highly silicon-
loading could improve the electrochemical performance of Si/C com-
posite.

Here, we designed a simple and economic strategy to preparing
three-dimensional hierarchical porous nitrogen-doped carbon coated Si
(3D NPC@Si) microsphere via high voltage sputtering and subsequent
heat treatment. The as-prepared 3D NPC@Si possesses several features:
1) nano-silicon can cushion the stress of volume changes to a certain
extent; 2) silicon embedded carbon not only buffer the volume expan-
sion of silicon, but also contribute to the formation of a stable SEI film
due to the hierarchical porous structure and void space between silicon
and carbon; 3) highly silicon-loading (∼78%) can significantly improve
the capacity of composites; 4) introduce heteroatom (N) doped porous
carbon can alter the band gap and/or surface property to improve the
electrochemical activity of the material.

2. Experimental

2.1. Preparation of ZIF-8

Generally, 1.071 g of Zinc nitrate hexahydrate (Tianjin Hongyan
Chemical Co., Ltd., 99.0%) was added into 50.0 mL of methanol
(Tianjin Baishi Chemical Co., Ltd., 99.5%) to form a homogeneous so-
lution A. 2.357 g of 2-methylimidazole (Aladdin, 98%) were dissolved
into 50.0 mL of methanol to obtain solution B. Solution A was quickly
added into solution B and with agitated stirring for 24 h. The white
precipitate (ZIF-8) was obtained by centrifugation and washing with
methanol, and dried under oven at 80 °C for 10 h.

2.2. Synthesis of 3D NPC@Si

0.35 g of Si nanoparticles (∼100 nm) (Shanghai Naiou Nano

Technology Co., Ltd., 99.9%) were ultrasonically dispersed in N,N-di-
methyl-formamide (Shanghai Titan Scientific Co., Ltd., 99.5%) followed
by addition of 0.2 g of obtained ZIF-8, and then stirring at room tem-
perature. The mixed solution was homogenized for 10min to obtain a
dispersion. 0.2 g of polyacrylonitrile (PAN, Mw=150,000) was added
to the dispersion with continuous stirring for 1 h at 60 °C, subsequently
continue stirring for 12 h at room temperature. Then, high voltage
sputtering was carried out at 15 kV. A self-made sputtering apparatus
was utilized, which consisted of a high voltage supplier, an injection
pump, an aluminum foil receiver, and the distance from the tip nozzle
to receiver was about 15 cm. The obtained yellow precursor (Si/ZIF-8/
PAN composite) was collected. The resulted Si/ZIF-8/PAN was placed
in tube furnace and calcinated, the products were carbonized with two
steps in nitrogen atmosphere: 350 °C for 3 h and subsequent 800 °C for
another 1 h. Subsequently, the obtained brown powder composites
were washed for 24 h with 2M hydrochloric acids (Tianjin Hongyan
Chemical Co., Ltd.). Finally, the as-obtained NPC@Si sample was rinsed
with deionized water and ethanol (Shanghai Titan Scientific Co., Ltd.,
99.7%), then dried at 80 °C for 12 h in a vacuum oven. For comparison,
a control experiment was executed to prepare N-doped carbon coated Si
(NC@Si) by a similar procedure without adding ZIF-8.

2.3. Materials characterization

The crystal structure of the sample was characterized by X-ray dif-
fraction (XRD, D8, Bruker Germany). The morphology of the samples
was examined using scanning electron microscopy (SEM, ZEISS
SUPRA55 VP) and transmission electron microscopy (TEM, Titan G2
60-300). The content of silicon was investigated by thermogravimetric
analysis (TGA, NETZSCH STA 449F3, Germany). The surficial compo-
nents content was studied using X-ray photoelectron spectroscopy (XPS,
Thermo SCIENTIFIC ESCALAB 250X). The specific surface areas and
porous distributions of materials were studied using nitrogen sorption
measurement (Autosrob-1 Quantachrome Ins). Elemental analysis was
analyzed by Vario EL III.

2.4. Electrochemical measurements

To test the electrochemical properties of the samples with coin-type
half-cells. The working electrodes were prepared by mixing 60% of the
active materials, 20% of acetylene black, and 20% of sodium alginate in
deionized water to form a slurry. The resulting mixture slurry was
pasted onto the copper current collector using the doctor-blade method
and then dried in a vacuum oven at 80 °C for 12 h, finally punched into
circular discs, the mass loading of active materials was∼0.6mg cm−2.
The batteries were assembled in an Ar-filled glove box (water and
oxygen concentration were kept less than 1 ppm) with Celgard 2400 as
the separator membrane. The electrolyte consisted of a 1M LiPF6 so-
lution in a mixture of ethylene carbonate (EC) and dimethyl carbonate
(DMC) (1:1, v/v) containing 5 wt% vinylene carbonate (VC), and metal
Li foil was used as the counter electrode. After standing for 12 h, a
Neware BTS (R3) system was used to evaluate galvanostatic charge/
discharge test between 0.01 and 1.5 V. The cyclic voltammetry (CV)
curves were measured on a CHI660D electrochemical workstation be-
tween 0.01 and 1.5 V with a scan rate of 0.1 mV s−1. The electro-
chemical impedance spectroscopy (EIS) was performed by applying a
10mV voltage within a frequency range between 100 kHz and 0.1 Hz
on a Zahner Elektrik electrochemical workstation.

3. Results and discussion

The fabrication process of 3D NPC@Si microsphere is schematically
illustrated in Fig. 1. Firstly, universal solvent method was used to
synthesis ZIF-8. Secondly, microspheres were prepared by high voltage
sputtering and a subsequent carbonizing process with the mixture of
ZIF-8, Si NPs and PAN. Here, both ZIF-8 and PAN were as carbon and
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