Accepted Manuscript

Heterogeneous activation of peroxymonosulfate over monodispersed $Co_3O_4/$ activated carbon for efficient degradation of gaseous toluene

Ruijie Xie, Jian Ji, Haibao Huang, Dongxue Lei, Ruimei Fang, Yajie Shu, Yujie Zhan, Kaiheng Guo, Dennis Y.C. Leung

PII:	S1385-8947(18)30240-7
DOI:	https://doi.org/10.1016/j.cej.2018.02.045
Reference:	CEJ 18524
To appear in:	Chemical Engineering Journal
Received Date:	7 November 2017
Revised Date:	8 February 2018
Accepted Date:	9 February 2018

Please cite this article as: R. Xie, J. Ji, H. Huang, D. Lei, R. Fang, Y. Shu, Y. Zhan, K. Guo, D.Y.C. Leung, Heterogeneous activation of peroxymonosulfate over monodispersed Co_3O_4 /activated carbon for efficient degradation of gaseous toluene, *Chemical Engineering Journal* (2018), doi: https://doi.org/10.1016/j.cej. 2018.02.045

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Heterogeneous activation of peroxymonosulfate over monodispersed Co₃O₄/activated carbon for efficient degradation of gaseous toluene

Ruijie Xie¹, Jian Ji¹, Haibao Huang^{1*}, Dongxue Lei¹, Ruimei Fang¹, Yajie Shu¹,

Yujie Zhan¹, Kaiheng Guo¹, Dennis Y.C. Leung²

¹ School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou

510275, PR China

² Department of Mechanical Engineering, University of Hong Kong, Hong Kong

Abstract: Gas-phase VOCs decomposition generally produces intermediates and causes secondary air pollution. To avoid this issue, we proposed a novel method for a typical gaseous VOC (toluene) degradation via catalytic activation of peroxymonosulfate (PMS) in the liquid phase. Herein, activated carbon supported monodispersed Co₃O₄ nanoparticles (Co₃O₄/AC) were prepared via a facile deposition method. It is highly efficient in PMS activation for toluene degradation due to the presence of Co-OH⁺ species and well dispersed Co₃O₄ on Co₃O₄/AC. A toluene removal efficiency of nearly 90% was maintained during the reaction, and few gaseous intermediates were discharged. Sulfate radical (SO_4^{\bullet}) and hydroxyl radical (HO') derived from PMS activation played different roles during toluene oxidation and mineralization. Electron spin resonance (EPR) suggested that the generation of plentiful SO₄⁻resulted in the superior toluene degradation, and the presence of HO[•] can improve carbon mineralization. Radical quenching tests further confirmed that SO_4 played a dominant role for toluene degradation, whereas the absence of HO^{\cdot} inhibited the carbon mineralization. The toluene degradation pathway in the

Download English Version:

https://daneshyari.com/en/article/6579900

Download Persian Version:

https://daneshyari.com/article/6579900

Daneshyari.com