Accepted Manuscript

Adsorption-photocatalysis Functional Expanded Graphite C/C Composite for In-Situ Photocatalytic Inactivation of Microcystis aeruginosa

Xin Wang, Xuejiang Wang, Jianfu Zhao, Jingke Song, Chenliang Su, Zhongchang Wang

PII: S1385-8947(18)30249-3

DOI: https://doi.org/10.1016/j.cej.2018.02.054

Reference: CEJ 18533

To appear in: Chemical Engineering Journal

Received Date: 18 November 2017 Revised Date: 14 January 2018 Accepted Date: 10 February 2018

Please cite this article as: X. Wang, X. Wang, J. Zhao, J. Song, C. Su, Z. Wang, Adsorption-photocatalysis Functional Expanded Graphite C/C Composite for In-Situ Photocatalytic Inactivation of Microcystis aeruginosa, *Chemical Engineering Journal* (2018), doi: https://doi.org/10.1016/j.cej.2018.02.054

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Adsorption-photocatalysis Functional Expanded Graphite C/C Composite for In-Situ Photocatalytic Inactivation of *Microcystis aeruginosa*

Xin Wang^{a,b,c}, Xuejiang Wang^{a,*}, Jianfu Zhao^a, Jingke Song^a, Chenliang Su^{b,*}
Zhongchang Wang^{c,*}

^a State Key Laboratory of Pollution Control and Resource Reuse, College of
 Environmental Science and Engineering, Tongji University, Shanghai Institute of
 Pollution Control and Ecological Security, Shanghai 200092, China

 ^b SZU-NUS Collaborative Innovation Center for Optoelectronics Science and
 Technology, International Collaborative Laboratory of 2D Materials for
 Optoelectronics Science and Technology of Ministry of Education, College of
 Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China

 ^c International Iberian Nanotechnology Laboratory (INL), Avenida Mestre Jose Veiga,

Braga, 4715-330 Portugal

ABSTRACT: In this study, efficient adsorption-photocatalysis functional expanded graphite covered carbon layer composites (shorted for AP-EGC) with graphitic carbon nitride (g-C₃N₄, shorted for C) and nitrogen-phosphorus codoped titanium dioxide (NP-TiO₂, shorted for T) coating was successfully prepared, which has been named as AP-EGC-CT. It was used for in-situ remediation of harmful algae polluted water. It is shown that the AP-EGC-CT composites exhibit a worm-like structure which can be manipulated by the expanded graphite substrate, and g-C₃N₄ can tune their photoelectric property. Of all the composites, the AP-EGC-CT with 5 wt% g-C₃N₄

1

^{*} Corresponding author. Tel. +86 021 65984268; E-mail address: wangxj@tongji.edu.cn (X. Wang); chmsuc@szu.edu.cn (C. Su); zhongchang.wang@inl.int (Z. Wang).

Download English Version:

https://daneshyari.com/en/article/6579926

Download Persian Version:

https://daneshyari.com/article/6579926

<u>Daneshyari.com</u>