Accepted Manuscript

Preparation of ultra-small molecule-like Ag nano-clusters in silicate glass based on ion-exchange process: energy transfer investigation from molecule-like Ag nano-clusters to Eu³⁺ ions

Jingyuan Zhao, Zhengwen Yang, Chengye Yu, Jianbei Qiu, Zhiguo Song

PII: S1385-8947(18)30223-7

DOI: https://doi.org/10.1016/j.cej.2018.02.028

Reference: CEJ 18507

To appear in: Chemical Engineering Journal

Received Date: 22 November 2017 Revised Date: 30 January 2018 Accepted Date: 6 February 2018

Please cite this article as: J. Zhao, Z. Yang, C. Yu, J. Qiu, Z. Song, Preparation of ultra-small molecule-like Ag nano-clusters in silicate glass based on ion-exchange process: energy transfer investigation from molecule-like Ag nano-clusters to Eu³⁺ ions, *Chemical Engineering Journal* (2018), doi: https://doi.org/10.1016/j.cej.2018.02.028

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Preparation of ultra-small molecule-like Ag nano-clusters in silicate glass based on ion-exchange process: energy transfer investigation from molecule-like Ag nano-clusters to ${\rm Eu}^{3+}$ ions

Jingyuan Zhao, Zhengwen Yang*, Chengye Yu, Jianbei Qiu*, Zhiguo Song
College of Materials Science and Engineering, Kunming University of Science and
Technology, Kunming, 650093, China

Corresponding Author E-mails: yangzw@kmust.edu.cn; giu@kmust.edu.cn **Abstract:** Ultra-small sliver nano-clusters are a novel kind of materials with excellent photoluminescence properties, which have potential application in the fields of integrated optical storage, biological optics sensor and solid state lighting. In this work, ultra-small molecule-like Ag nano-clusters were prepared in the silicate glass by the ion-exchange process. The influence of ion-exchange temperature, ion-exchange time and ratio of molten salt composition on the formation of molecule-like Ag nano-clusters was investigated systematically in the silicate glass by the transmission electron microscopy, optical absorption and photoluminescence spectroscopy. The results demonstrated that the stabilized molecule-like Ag nano-clusters with the size of 1-3 nm were formed by controlling the ion-exchange parameters. In addition, the influence of Eu³⁺ doping on the formation of molecule-like Ag nano-clusters was observed in the silicate glass, promoting the growth of molecule-like Ag nano-clusters. The luminescence enhancement of Eu³⁺ was obtained due to efficient energy transfer from molecule-like Ag nano-clusters to Eu^{3+} .

Keywords: Photoluminescence; energy transfer; molecule-like Ag nano-clusters; ion-exchange

Download English Version:

https://daneshyari.com/en/article/6579986

Download Persian Version:

https://daneshyari.com/article/6579986

<u>Daneshyari.com</u>