Accepted Manuscript

Enhanced removal of *p*-nitrophenol in a microbial fuel cell after long-term operation and the catabolic versatility of its microbial community

Huanhuan Zhao, Chui-Hua Kong

PII: S1385-8947(18)30180-3

DOI: https://doi.org/10.1016/j.cej.2018.01.158

Reference: CEJ 18478

To appear in: Chemical Engineering Journal

Received Date: 19 December 2017 Revised Date: 30 January 2018 Accepted Date: 31 January 2018

Please cite this article as: H. Zhao, C-H. Kong, Enhanced removal of *p*-nitrophenol in a microbial fuel cell after long-term operation and the catabolic versatility of its microbial community, *Chemical Engineering Journal* (2018), doi: https://doi.org/10.1016/j.cej.2018.01.158

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Enhanced removal of p-nitrophenol in a microbial fuel cell after long-term operation and the catabolic versatility of its microbial community

Huanhuan Zhao, Chui-Hua Kong*

College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.

* Corresponding author: C. H. Kong, Tel: +86-10-62732752; Fax: +86-10-62731016.

E-mail address: kongch@cau.edu.cn

Abstract: Electrochemical technology was employed to degrade *p*-nitrophenol (PNP) in a microbial fuel cell (MFC). Approximately 81% of 50 mg/L PNP was degraded within 24 h by the anode at 28°C and pH 7.0. A significant interaction of temperature, pH, and initial PNP concentration was found for the degradation of PNP, and a theoretical maximum degradation rate of 95% was achieved at 34.63°C, pH 7.4, and an initial PNP concentration of 126.96 mg/L after a 3-day incubation. Moreover, after long-term operation, the anodic biofilm exhibited the ability to degrade various aromatic compounds, including chloramphenicol, benzofluorfen, fluoxastrobin, and flubendiamide. High-throughput sequencing analysis showed that functional bacteria of the genera *Corynebacterium*, *Comamonas*, *Chryseobacterium* and *Rhodococcus* predominated in the MFC anode biofilm. The complex syntrophic interactions among these functional bacteria were important for efficient removal of organic compounds. In conclusion, the MFC exhibited the potential to treat aromatic contaminants due to

Download English Version:

https://daneshyari.com/en/article/6580069

Download Persian Version:

https://daneshyari.com/article/6580069

<u>Daneshyari.com</u>