Accepted Manuscript

Evaluation of a new sponge addition-microbial fuel cell system for removing nutrient from low C/N ratio wastewater

Lijuan Deng, Huu-Hao Ngo, Wenshan Guo, Jie Wang, Hongwei Zhang

PII: S1385-8947(18)30029-9

DOI: https://doi.org/10.1016/j.cej.2018.01.028

Reference: CEJ 18348

To appear in: Chemical Engineering Journal

Received Date: 6 November 2017 Revised Date: 4 January 2018 Accepted Date: 4 January 2018

Please cite this article as: L. Deng, H-H. Ngo, W. Guo, J. Wang, H. Zhang, Evaluation of a new sponge addition-microbial fuel cell system for removing nutrient from low C/N ratio wastewater, *Chemical Engineering Journal* (2018), doi: https://doi.org/10.1016/j.cej.2018.01.028

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Evaluation of a new sponge addition-microbial fuel cell system for removing nutrient from low C/N ratio wastewater

Lijuan Deng^{a,b}, Huu-Hao Ngo^{c,*}, Wenshan Guo^c, Jie Wang^{a,b}, Hongwei Zhang^{a,b,*} a State Key Laboratory of Separation Membranes and Membrane Process, Tianjin Polytechnic University, Tianjin 300387, China

b School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China c Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia

*Corresponding author, Email: hwzhang@tju.edu.cn; Tel: +86-13502171853

Email: haon@eng.uts.edu.au; Tel: +61-295142745

Abstract

This study developed a new microbial fuel cell (MFC) system (Sponge-MFC), which consisted of a cathodic chamber with an added sponge and two anodic chambers, for low carbon/nitrogen (C/N) wastewater treatment. When operating in the closed-circuit state, the Sponge-MFC(C) demonstrated its superior electrochemical performance compared to the closed-circuit MFC. This superiority took the form of higher coulombic efficiencies, voltage outputs, current densities and power densities. Adding a sponge could reduce the cathode's charge transfer resistance and solution resistance, and improve its capacitance, thus increasing cathodic reaction rate and power outputs. Simultaneous nitrification denitrification (SND) and bioelectrochemical denitrification processes on the cathode coupled with the sponge's SND process were responsible for efficient removal of nitrogen from the Sponge-MFC(C). Fluorescent in situ hybridization (FISH) analysis revealed that nitrifying bacteria and highly diversified denitrifying bacteria were distributed at the cathode's outer layer and inner layer, respectively. Higher phosphorus removal efficiencies (82.06 \pm 1.21%) in the Sponge-MFC(C) than that in the MFC(C) (53.97 \pm 2.32%) could be ascribed to biological phosphorus removal and precipitation of phosphate salts on the cathode. These results suggested the Sponge-MFC(C) could accomplish better

Download English Version:

https://daneshyari.com/en/article/6580201

Download Persian Version:

https://daneshyari.com/article/6580201

<u>Daneshyari.com</u>