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a b s t r a c t

We present a similarity solution for mass/heat transfer in laminar forced convection at high Peclet
numbers. The classical boundary layer solution of the Graetz–Nusselt problem, valid for straight channels
or pipes, is generalized to an axisymmetric microchannel with circular cross-section, whose radius R(z)
varies continuously along the axial coordinate z. The case of fixed wall concentration/temperature is
analyzed.

The advection/diffusion transport problem is solved by taking into account both the tangential and
normal velocity components (and their scaling behaviours as a function of the wall normal distance),
in order to obtain an accurate description of the concentration/temperature profile in the boundary layer.

The analytical solution of the local Sherwood/Nusselt number is compared with finite elements
numerical results for a truncated cone and a wavy sinusoidal channel.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

A correct estimation of heat and mass transfer coefficients is a
powerful tool in the design of heat exchangers, mass transfer
equipments and reactors, as well as micro-devices for chemical
and biomedical applications [1-6]. Focusing on laminar forced
convection of an incompressible fluid in a duct, the estimation of
transport coefficients requires the solution of the classical Gra-
etz–Nusselt problem [7,8]. Originally proposed for a sudden step
change of the wall temperature at some positions along the duct
and no axial diffusion [9,10], the Graetz–Nusselt problem is valid
for both heat and mass transfer and it has been solved in transient
and steady state [11], for Dirichlet and Neumann boundary condi-
tions [12], non-Newtonian fluids [13], high viscous dissipation
[14], boundary condition of continuity between two counterflow
streams [15], axial diffusion [16,17], simultaneous heat and mass
transfer [18–22]. The boundary layer problem, valid in the limit
of Pe ?1, has been analytically solved in channels with constant
cross-section for a variety of different cross-sections [23]. On the
other hand, convection–diffusion transport in converging or
diverging flows has been addressed for Taylor dispersion at low
Reynolds number [24], but very few efforts have been devoted to
the Graetz–Nusselt problem in converging–diverging channels.

Non-parallel ducts have been indicated as a possible strategy to
enhance heat transfer and numerical examples have been shown
to corroborate the so-called ‘‘field synergy principle’’ [25].
Castelloes et al. [26] investigated heat transfer enhancement in
converging–diverging channels in laminar flow conditions for
1 < Pe < 100. The energy equation was solved using a hybrid
numerical-analytical approach based on the Generalized Integral
Transform Technique (GITT) in partial transformation mode for a
transient formulation.

Recently, an analytical solution [27] has been proposed for the
combined diffusive and convective mass transport from a surface
film of arbitrary shape at a given uniform concentration to a pure
solvent, flowing in the creeping regime through converging–
diverging microchannels with slender rectangular cross-section.
In [27] Adrover and Pedacchia clearly show that, close to the
curved releasing boundary, both the tangential vt and the normal
velocity vn components play a role in the mass transfer process,
and their scaling behaviour as a function of wall the normal dis-
tance should be taken into account for an accurate description of
the concentration profile in the boundary layer.

By following similar arguments, we present a similarity solution
for mass/heat transfer in laminar forced convection at high Peclet
numbers in axisymmetric microchannel with circular
cross-section, whose radius R(z) varies continuously along the axial
coordinate z. Creeping flow conditions and fixed concentration/
temperature at the channel wall are assumed. High values of Peclet
number, together with low Reynolds numbers are often

0017-9310/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.08.101

⇑ Corresponding author. Tel.: +39 06 44585609; fax: +39 06 44585451.
E-mail addresses: alessandra.adrover@uniroma1.it (A. Adrover), augusta.

pedacchia@uniroma1.it (A. Pedacchia).

International Journal of Heat and Mass Transfer 68 (2014) 21–28

Contents lists available at ScienceDirect

International Journal of Heat and Mass Transfer

journal homepage: www.elsevier .com/locate / i jhmt

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijheatmasstransfer.2013.08.101&domain=pdf
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.08.101
mailto:alessandra.adrover@uniroma1.it
mailto:augusta.pedacchia@uniroma1.it
mailto:augusta.pedacchia@uniroma1.it
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.08.101
http://www.sciencedirect.com/science/journal/00179310
http://www.elsevier.com/locate/ijhmt


encountered in microfluidic applications, especially in connection
with mass transport problems characterized by low diffusivity val-
ues, see e.g. micro-mixing devices [28–31], dispersion problems
[32] and wide-bore chromatography [33,34].

2. Statement of the problem and numerical solutions

Let us consider an incompressible fluid moving in creeping flow
conditions through an axisymmetric microchannel with circular
cross-sections, whose radius varies along the axial coordinate.

Let ~r and ~z be the radial and axial coordinates, R0 the radius of
the inlet section, Lz the channel length and D the diffusion
coefficient. Let / be a scalar field representing a dimensionless
concentration or temperature

/ ¼ c � cinlet

cwall � cinlet
¼ T � T inlet

Twall � T inlet

In terms of dimensionless spatial coordinates
z ¼ ~z=R0; 0 6 z 6 1=a ¼ Lz=R0 and r ¼ ~r=R0; 0 6 r 6 RzðzÞ (see
Fig. 1) the steady-state convection–diffusion transport equation
and boundary conditions (fixed wall concentration/temperature
cwall/Twall and Danckwerts inlet–outlet conditions) read as
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where a = R0/Lz� 1 is the aspect ratio, Pe = vRR0/D is the cross-sec-
tional Peclet number (Pe = Re Sc or Pe = Re Pr) evaluated with re-
spect to the average inlet axial velocity vR. Let vr(r,z) and vz(r,z)
be the dimensionless velocity components:
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where R0z = d Rz/d z. The parabolic axial velocity profile vz(r,z) is
evaluated from lubrication theory by enforcing unitary flow rate
and no-slip boundary conditions. The radial velocity component vr

(r,z) is obtained by enforcing the continuity equation in cylindrical
coordinates [27]. Creeping flow conditions are assumed.

The local mass/heat transfer coefficient h can be expressed in
terms of the Sherwood/Nusselt number Sh = h R0/D, Nu = h R0/k
evaluated from the gradient at the releasing wall as:

Nomenclature

List of symbols
c concentration
D diffusion coefficient
g(z,Pe) rescaling function, Eq. (16)
h mass/heat transfer coefficient
I(z) integral function, Eq. (21)
Lz channel length
n vector normal to the releasing wall at the point (Rz(z),z)
Pe = vRR0/D cross-sectional Peclet number
Peeff = aPe effective Peclet number
Pel local Peclet number
~r; ~z radial and axial dimensional coordinates
r, z radial and axial dimensionless coordinates
Rz(z) dimensionless cross-section radius depending on the

axial position z
R0z(z) = dRz/dz first order derivative of Rz(z)
R00z (z) = d2Rz/dz2 second order derivative of Rz(z)
R0 radius of the inlet section
R = R(s) = Rz(z(s)) dimensionless cross-section radius depending

on the curvilinear abscissa s
R0(s) = dRz(z)/dzjz(s) first order derivative of Rz(z) evaluated at z(s)
R00(s) = d2Rz(z)/dz2jz(s) second order derivative of Rz(z) evaluated

at z(s)

s curvilinear abscissa
Sh = h R0/D Sherwood number
Shapp approximate Sherwood number evaluated by neglecting

the nornal convective term
t vector tangent to the releasing wall at the point (Rz(z),z)
T temperature
v0

nðsÞ prefactor of the quadratic term of the normal velocity
component vnðd; sÞ ’ v0

nðsÞd2

v0
t ðsÞ prefactor of the linear term of the tangent velocity

component v tðd; sÞ ’ v0
t ðsÞd

vr, vz dimensionless radial and axial velocity components
vn, vt dimensionless normal and tangent velocity components
vR average inlet axial velocity

Greek symbols
a = R0/Lz channel aspect ratio
d wall normal distance
g = dg(s,Pe) similarity variable
/ dimensionless scalar field (concentration or

temperature)
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r
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Fig. 1. Schematic representation of a channel longitudinal section at h = 0. r and z
represent the dimensionless radial and axial coordinates. d is the dimensionless
wall normal distance. s is a curvilinear abscissa measured from the channel inlet
section. n and t are the vectors normal and tangent to the releasing wall.
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