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We present a similarity solution for mass/heat transfer in laminar forced convection at high Peclet
numbers. The classical boundary layer solution of the Graetz-Nusselt problem, valid for straight channels
or pipes, is generalized to an axisymmetric microchannel with circular cross-section, whose radius R(z)
varies continuously along the axial coordinate z. The case of fixed wall concentration/temperature is

analyzed.
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The advection/diffusion transport problem is solved by taking into account both the tangential and
normal velocity components (and their scaling behaviours as a function of the wall normal distance),
in order to obtain an accurate description of the concentration/temperature profile in the boundary layer.

The analytical solution of the local Sherwood/Nusselt number is compared with finite elements
numerical results for a truncated cone and a wavy sinusoidal channel.
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1. Introduction

A correct estimation of heat and mass transfer coefficients is a
powerful tool in the design of heat exchangers, mass transfer
equipments and reactors, as well as micro-devices for chemical
and biomedical applications [1-6]. Focusing on laminar forced
convection of an incompressible fluid in a duct, the estimation of
transport coefficients requires the solution of the classical Gra-
etz-Nusselt problem [7,8]. Originally proposed for a sudden step
change of the wall temperature at some positions along the duct
and no axial diffusion [9,10], the Graetz-Nusselt problem is valid
for both heat and mass transfer and it has been solved in transient
and steady state [11], for Dirichlet and Neumann boundary condi-
tions [12], non-Newtonian fluids [13], high viscous dissipation
[14], boundary condition of continuity between two counterflow
streams [15], axial diffusion [16,17], simultaneous heat and mass
transfer [18-22]. The boundary layer problem, valid in the limit
of Pe — oo, has been analytically solved in channels with constant
cross-section for a variety of different cross-sections [23]. On the
other hand, convection-diffusion transport in converging or
diverging flows has been addressed for Taylor dispersion at low
Reynolds number [24], but very few efforts have been devoted to
the Graetz-Nusselt problem in converging-diverging channels.
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Non-parallel ducts have been indicated as a possible strategy to
enhance heat transfer and numerical examples have been shown
to corroborate the so-called “field synergy principle” [25].
Castelloes et al. [26] investigated heat transfer enhancement in
converging-diverging channels in laminar flow conditions for
1<Pe<100. The energy equation was solved using a hybrid
numerical-analytical approach based on the Generalized Integral
Transform Technique (GITT) in partial transformation mode for a
transient formulation.

Recently, an analytical solution [27] has been proposed for the
combined diffusive and convective mass transport from a surface
film of arbitrary shape at a given uniform concentration to a pure
solvent, flowing in the creeping regime through converging-
diverging microchannels with slender rectangular cross-section.
In [27] Adrover and Pedacchia clearly show that, close to the
curved releasing boundary, both the tangential »; and the normal
velocity v, components play a role in the mass transfer process,
and their scaling behaviour as a function of wall the normal dis-
tance should be taken into account for an accurate description of
the concentration profile in the boundary layer.

By following similar arguments, we present a similarity solution
for mass/heat transfer in laminar forced convection at high Peclet
numbers in axisymmetric microchannel with circular
cross-section, whose radius R(z) varies continuously along the axial
coordinate z. Creeping flow conditions and fixed concentration/
temperature at the channel wall are assumed. High values of Peclet
number, together with low Reynolds numbers are often
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Nomenclature

List of symbols

c concentration

D diffusion coefficient

g(z,Pe) rescaling function, Eq. (16)

h mass/heat transfer coefficient

1(z) integral function, Eq. (21)

L, channel length

n vector normal to the releasing wall at the point (R/z),z)

Pe = vgRo/D cross-sectional Peclet number
Pe.ss = oPe effective Peclet number

Pe, local Peclet number

T, z radial and axial dimensional coordinates

T,z radial and axial dimensionless coordinates

R,(2) dimensionless cross-section radius depending on the

axial position z

R)(z) = dR,/dz first order derivative of R,(z)

R)(z) = d’R,/dZ* second order derivative of R,(z)

Ro radius of the inlet section

R =R(s)=R,(z(s)) dimensionless cross-section radius depending
on the curvilinear abscissa s

R'(s) = dRz)/dz|,s) first order derivative of R,(z) evaluated at z(s)

R'(s) = d®R/z)/dz lsy second order derivative of R(z) evaluated
at z(s)

S curvilinear abscissa
Sh=h Ro/D Sherwood number

Shapp approximate Sherwood number evaluated by neglecting
the nornal convective term

t vector tangent to the releasing wall at the point (R,(z),z)

T temperature

20(s) prefactor of the quadratic term of the normal velocity
component vy(3,s) ~ 9(s)d?

22(s) prefactor of the linear term of the tangent velocity
component v;(3,s) ~ v9(s)d

Uy, Uy dimensionless radial and axial velocity components
Un, Ut dimensionless normal and tangent velocity components
R average inlet axial velocity

Greek symbols
o =Ro/L, channel aspect ratio

é wall normal distance
n = ég(s,Pe) similarity variable
¢ dimensionless  scalar field (concentration or

temperature)

encountered in microfluidic applications, especially in connection
with mass transport problems characterized by low diffusivity val-
ues, see e.g. micro-mixing devices [28-31], dispersion problems
[32] and wide-bore chromatography [33,34].

2. Statement of the problem and numerical solutions

Let us consider an incompressible fluid moving in creeping flow
conditions through an axisymmetric microchannel with circular
cross-sections, whose radius varies along the axial coordinate.

Let 7 and z be the radial and axial coordinates, Ry the radius of
the inlet section, L, the channel length and D the diffusion
coefficient. Let ¢ be a scalar field representing a dimensionless
concentration or temperature

_ C — Cinlet T - Tinlet
Cwall — Cinlet Twall - Tinlet

In terms of dimensionless spatial coordinates
z=2/Ry, 0<z<1/a=L,/Ry and r=T7/Ry, 0<T<R,(2) (see
Fig. 1) the steady-state convection-diffusion transport equation
and boundary conditions (fixed wall concentration/temperature
Cwall/Twan and Danckwerts inlet-outlet conditions) read as

0 dp 0*¢ 10 /.0
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where o = Ro/L, < 1 is the aspect ratio, Pe = vzRy/D is the cross-sec-
tional Peclet number (Pe = Re Sc or Pe = Re Pr) evaluated with re-
spect to the average inlet axial velocity ug. Let v(r,z) and v,(r,z)
be the dimensionless velocity components:

/ 2
(r.2) = 2% (1 - (%) ) 3)
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where R, =d R,/d z. The parabolic axial velocity profile v,r,z) is
evaluated from lubrication theory by enforcing unitary flow rate
and no-slip boundary conditions. The radial velocity component v,
(r,z) is obtained by enforcing the continuity equation in cylindrical
coordinates [27]. Creeping flow conditions are assumed.

The local mass/heat transfer coefficient h can be expressed in
terms of the Sherwood/Nusselt number Sh=h Ry/D, Nu=h Ry/k
evaluated from the gradient at the releasing wall as:

outflow z=L,/R,
AM44444404444044

r

Fig. 1. Schematic representation of a channel longitudinal section at =0. r and z
represent the dimensionless radial and axial coordinates. ¢ is the dimensionless
wall normal distance. s is a curvilinear abscissa measured from the channel inlet
section. n and t are the vectors normal and tangent to the releasing wall.
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