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a b s t r a c t

Application of the lattice Boltzmann method (LBM) has been extended to formulate and solve the energy
equation of a non-Fourier conduction and radiation heat transfer problem in a concentric spherical shell.
The enclosed conducting-radiating medium is absorbing, emitting and scattering. The non-Fourier con-
duction effect is induced by thermally perturbing one of the boundaries and incorporating the finite prop-
agation speed of the thermal wave front in Fourier’s law of heat conduction. The volumetric radiative
information needed in the energy equation has been computed using the finite volume method (FVM).
To establish the accuracy of the LBM approach, with volumetric radiative information obtained from
the FVM, the energy equation is also solved using the FVM. Effects of extinction coefficient, scattering
albedo, conduction–radiation parameter, emissivity, radius ratio and the magnitude of thermal perturba-
tions are studied on transient temperature distributions. Effects of the aforesaid parameters on the
steady-state conduction, radiation and total energy flow rates are also studied. Steady-state LBM and
FVM results are compared. In all the cases, the LBM results compare exceedingly well with the FVM
results, and LBM has a faster convergence than the FVM.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Analysis of combined mode conduction and radiation heat
transfer is important in many thermal systems. Its consideration
is paramount in the analysis and design of boilers, furnaces and
insulations [1–4]. Its accounting is equally important for the cor-
rect analysis of phase change processes of semi-transparent mate-
rials such as glass and silicon [5,6]. Radiation and conduction are
important modes of heat transfer in burners based on porous med-
ium combustion [7,8]. Combined mode conduction and radiation
also finds application in laser based manufacturing process [9,10]
and in the area of bioheat transfer pertaining to laser surgery
and ablation of malignant tissues [11–13]. Consideration of ther-
mal radiation with and without conduction in a spherical enclosure
containing an absorbing, emitting, and scattering medium finds
applications in the analysis of nuclear reactors, spherical propul-
sion systems, astrophysics, droplet combustion, droplet radiator
systems for spacecraft thermal control, etc. [14,15].

Combined mode conduction and/or radiation problems in a
spherical shell have been analyzed by many [15–21]. In any
geometry, thermal response of the system in transient state is
quite different with and without consideration of finite propaga-
tion speed of the conduction wave front [21–34]. Conduction heat
transfer as per Fourier’s law does not consider any time lag be-
tween the cause (thermal perturbation) and the effect (manifesta-
tion of energy flow rate). In other words, as per Fourier’s law of
heat conduction, the effect of the thermal perturbation is instanta-
neously felt throughout the medium. In reality, however, it is never
so. Thermal wave front does take some finite time to move from
one location to the other. Examples are plenty [21–34]. In any sys-
tem, if the next pulse of thermal perturbation is imposed before
the effects of the previous ones have died out, consideration of fi-
nite propagation speed becomes important. Further, even when
any region of the system is thermally perturbed, like suddenly
changing the temperature of any boundaries or changing imposed
heat flux, if the temporal change is looked at time scale lower than
the system time scale L ðmÞ

C ðm s�1Þ where L is the characteristic length
and C is the propagation speed of the thermal wave front, consid-
eration of finite propagation speed becomes essential. The modi-
fied form of the heat conduction equation that accounts for the
finite propagation speed of the conduction wave front is known
as non-Fourier conduction.
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Realizing its importance and applications, many researchers
have studied combined conduction and/or radiation heat transfer
with non-Fourier effect. In the presence of volumetric radiation,
owing to the angular dependence of radiation that leads to inte-
gro-differential radiative transfer equation, the formulation and
solution become very much involved. Though many researchers
have investigated non-Fourier heat conduction alone
[21,26,28,31,33], some have done the analyses in the presence of
volumetric radiation [22–25,27,29,32]. Different numerical radia-
tive transfer methods like the P-N approximation [22], discrete
ordinate method (DOM) [12,34], the finite volume method (FVM)
[24,25,27,29,32], etc., have been used to compute the radiative
information needed in the energy equation which too has been
solved using different methods like the Green’s function method
[21] the finite difference method (FDM) [22] and the FVM [27,29].

During the past two decades, a wide range of problems in sci-
ence and engineering have been analyzed using the lattice Boltz-
mann method (LBM) [35–37]. LBM has found extensive usage in
the study of fluid flow and thermal problems [35–37]. In the recent
past, Mishra and co-workers and others have used LBM to analyze
many heat transfer problems involving thermal radiation [38–45].
Recently Chaabane et al. [43–45] have used the LBM to formulate
and solve the energy equations of combined mode conduction
and radiation heat transfer problems in 2-D cylindrical enclosure
[43] and 2-D rectangular enclosure [44,45]. Heat transfer by con-
duction was assumed to follow Fourier’s law. In their work, they
used control volume finite element method to compute the diver-
gence of radiative heat flux needed in the LBM formulation. The
usage of the LBM to formulate and solve the energy equations of
different kinds of combined mode problems in various geometries
by all authors was successful, and the experience was encouraging.

Mishra and co-workers have also used LBM to solve non-Fourier
conduction and radiation heat transfer in a planar [24,25] and
cylindrical geometry [32]. Without radiation, Mishra and Sahai
[31] have recently extended application of the LBM to non-Fourier

heat conduction in a cylindrical and spherical geometry. However,
as far as application of the LBM to analyze heat transfer with non-
Fourier conduction and radiation in a spherical shell is concerned,
no work has been reported so far. The present work, therefore,
aims at extending the usage of the LBM to formulate and solve
the energy equation of a combined mode non-Fourier conduction
and radiation in a concentric spherical shell.

In the present work, the energy equation of a combined mode
non-Fourier conduction and radiation in a concentric spherical
shell containing radiating and conducting medium is formulated
and solved using the LBM. The volumetric radiative information
needed in the solution of the energy equation is computed using
the FVM. Effects of operating and geometric parameters like the
extinction coefficient, the scattering albedo, the conduction–radia-
tion parameter, the boundary emissivity, the radius ratio and the
magnitudes of the thermal perturbations of the boundaries on nor-
malized radial temperature distributions at different instants
including the steady-state (SS) are analyzed. At the SS, for all the
parameters, radial distributions of conductive, radiative and total
energy flow rates are also studied. For the same number of control
volumes and rays, in all cases, distributions of SS temperature and
energy flow rate obtained using the LBM are compared against
those obtained using the FVM. The number of iterations for the
SS results in LBM and FVM are provided.

In the following sections, first the energy equation of problem is
formulated in the LBM approach. LBM approach being termed as a
mesoscopic, concurrently, the governing equation in the macro-
scopic (continuum) approach is provided. Using Chapman–Enskog
multi-scale expansion, the consistency of the LBM equation is
proved. Expression for calculation of volumetric radiative informa-
tion needed in the energy equation is provided and its solution
using the FVM is briefly discussed. In the next section on results
and discussion, effects of various parameters on temperature and
energy flow rate distributions are analyzed. Conclusions are made
at the end.

Nomenclature

ai weight in LBM formulation
bi weight in LBM formulation
C speed of thermal wave, (m s�1)
Dm directional weight in direction m
ei non-dimensional propagation velocity in the direction i

in the lattice
~er unit radial vector
fi non-dimensional particle distribution function in the i

direction
f ð0Þi non-dimensional equilibrium particle distribution func-

tion in the i direction
G incident radiation (W m�2)
k thermal conductivity (W m�1 K�1)
N conduction–radiation parameter
Nh number of divisions of the polar space
qC non-dimensional heat flux
qT non-dimensional total heat flux
r1 non-dimensional radius of the inner sphere
r2 non-dimensional radius of the outer sphere
ri non-dimensional radial position of the ith node

Greek symbols
a thermal diffusivity (m2 s�1)
b extinction coefficient (m-1)
e emissivity
h polar angle

/ azimuthal angle
j absorption coefficient (m�1)
m expansion parameter
H normalized temperature, T�T2

T1�T2

ja absorption coefficient (m�1)
C thermal relaxation time (s)
x scattering albedo
rs scattering coefficient (m�1)
g normalized radial distance, r�r1

r2�r1

l direction cosines
f non-dimensional time
X solid angle (sr)
DX elemental solid angle (sr)
W non-dimensional energy flow rate

Superscript
m indices for discrete polar angles

Subscripts
1, 2 inner and outer spherical walls
C conductive
w wall
R radiative
ref reference
T total
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