Accepted Manuscript

Prussian Blue analogue derived porous $NiFe_2O_4$ nanocubes for low-concentration acetone sensing at low working temperature

Xiao-Feng Wang, Wei Ma, Feng Jiang, En-Si Cao, Kai-Ming Sun, Li Cheng, Xue-Zhi Song

PII:	S1385-8947(18)30088-3
DOI:	https://doi.org/10.1016/j.cej.2018.01.072
Reference:	CEJ 18392
To appear in:	Chemical Engineering Journal
Received Date:	28 October 2017
Revised Date:	9 January 2018
Accepted Date:	12 January 2018

Please cite this article as: X-F. Wang, W. Ma, F. Jiang, E-S. Cao, K-M. Sun, L. Cheng, X-Z. Song, Prussian Blue analogue derived porous NiFe₂O₄ nanocubes for low-concentration acetone sensing at low working temperature, *Chemical Engineering Journal* (2018), doi: https://doi.org/10.1016/j.cej.2018.01.072

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Prussian Blue analogue derived porous NiFe₂O₄ nanocubes for

low-concentration acetone sensing at low working temperature

Xiao-Feng Wang^a, Wei Ma^a, Feng Jiang^a, En-Si Cao^{c,d}, Kai-Ming Sun^a, Li Cheng^a, Xue-Zhi Song^{*,b}

^aSchool of Mathematics and Physics Science, Dalian University of Technology, 2 Dagong Road, Liaodongwan New District, Panjin 124221, Liaoning, China

^bSchool of Petroleum and Chemical Engineering, Dalian University of Technology, 2 Dagong Road, Liaodongwan New District, Panjin 124221, Liaoning, China

^cKey Lab of Advanced Transducers and Intelligent Control System, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China

^dCollege of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China

^{*}Corresponding author. E-mail address: <u>songxz@dlut.edu.cn</u>

Abstract

Real-time detection of acetone vapor at low concentration plays a decisive role in early noninvasive diagnosis of diabetes. In this work, porous NiFe₂O₄ crystalline nanocubes have been scalably prepared via an as-developed cost-efficient and facile which involves a morphology-inherited annealing treatment of strategy, single-resource Prussian Blue analogue of Ni₃[Fe(CN)₆]₂·xH₂O solid nanocubes as self-sacrificial templates. The porous NiFe₂O₄ crystalline nanocubes are demonstrated to be composed of primary nano building blocks and interconnected pores. When utilized as sensing materials, the as-synthesized NiFe₂O₄ exhibited p-type gas-sensing behavior that the resistance increases in a reducing gas atmosphere. Furthermore, the as-fabricated NiFe₂O₄ sensor was sensitive and selective to acetone gas with an obvious response value of 1.9 at its low concentration (1 ppm) and low detection of limit (0.52 ppm) at a quite low working temperature (160 °C). In addition, the sensing mechanism is deeply investigated. More significantly, our prominent findings herein shed light on the fabrication of metal oxide based gas sensors in environmental and medicinal fields.

Key words: acetone; gas sensor; NiFe₂O₄ nanocubes; low concentration; Prussian Blue analogue

Download English Version:

https://daneshyari.com/en/article/6580261

Download Persian Version:

https://daneshyari.com/article/6580261

Daneshyari.com