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a b s t r a c t

The principal objective of the present paper is to investigate the onset of convection in a horizontal layer
heated from below which consists of distinct porous sublayers which are separated by solid heat-con-
ducting partitions. Each of the porous sublayers are identical as are the solid partitions. The present
analysis employs linearised stability theory and a dispersion relation is derived from which neutral
curves may be computed. For two-layer configurations the dispersion relation may be written explicitly,
but for larger numbers of sublayers a simple systematic numerical procedure is used to compute the dis-
persion relation which, while it may also be written analytically, rapidly becomes increasingly lengthy as
the number of sublayers increases. It is found that neutral curves are always unimodal and each has a
well-defined single minimum. We attempt to give a comprehensive physical understanding of the effect
of the number of layer, the relative thickness of the partitions and the conductivity ratio on the onset of
convection and the form taken by the onset modes. Our results are compared with those of Rees and Genç
(2011) [1] who considered the special case where the partitions are infinitesimally thin.

� 2013 Published by Elsevier Ltd.

1. Introduction

A large number of papers have been published which have con-
sidered the effect of layering in one form or another on the onset
and subsequent development of convection in layers heated from
below. One of these, which considers two horizontal layers of fluid
heated from below where the two fluid layers are separated by an
impermeable horizontal interface, was written by Proctor and
Jones [2]. A linear stability analysis yielded information about the
onset of convection. It was found in some cases that the neutral
stability curve is bimodal, and the authors then continued to con-
sider weakly nonlinear convection where the two critical wave-
numbers were in the ratio of 1:2. Catton and Lienhard V [3]
considered a similar configuration but allowed the solid partition
to be of finite thickness and therefore its conductivity became of
importance.

In the present paper we also concentrate on a layer consisting of
a number of sublayers, but attention is focussed on convection tak-
ing place in a porous medium rather than a clear fluid. The sublay-
ers are identical in every respect and the partitions are also
identical in every respect. Layering has been quite a favoured topic
of study in the field of porous media because of its supposed appli-
cation to geological systems. A series of papers by McKibbin and

colleagues ([4–8] as well as others [9–11]) have teased out quite
a substantial amount of information about the surprisingly de-
tailed problem of the osnet of convection and its weakly nonlinear
development. For a general layered system McKibbin and O’Sulli-
van [4] provided quite a comprehensive analysis of the onset prob-
lem and this was subsequently developed into a weakly nonlinear
analysis by McKibbin and O’Sullivan [5]. A three-dimensional
weakly nonlinear analysis by Rees and Riley [11] showed that
two-dimensional convection is sometimes unstable, the realised
pattern being a set of cells with square planform. They also found
bimodal curves, which suggests that these may be quite ubiquitous
in layered configurations. One example of a trimodal configuration
was also found.

McKibbin and Tyvand [7] considered alternating configurations
of sublayers, where neighbouring sublayers were thick and thin.
The thermal properties of each type of sublayer were taken to be
identical but the thin layers had low permeability. This meant that
an anistropic modelling such as was undertaken in McKibbin and
Tyvand [6] could not be done so easily because convection cells
were found to be localised in the thick sublayers. Jang and Tsai
[12] considered a three-layer configuration where the middle sub-
layer is impermeable, but thermally conducting, and of finite thick-
ness. It was found that the system is at its most stable condition
when the partition is located centrally. Rees and Genç [1] consid-
ered a variation on this overall theme by insisting that the thin lay-
ers were of infinitesimal thickness and impermeable. In such
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composite layers convection patterns are localised within the por-
ous sublayers. There were three surprising results which were
found: (i) neutral curves naturally bunch into groups of N when
there are N sublayers; (ii) the dispersion relation for N sublayers
factorises into N similar factors, and this facilitates a large part of
the general analysis while explaining the bunching of the neutral
curves, and (iii) the system tends towards one with a critical Ray-
leigh number of 12 and wavenumber of 0 as the number of sublay-
ers increases — this is significant because these critical values
correspond to a single porous layer subject to constant heat flux
boundary conditions, whereas the overall problem has constant
temperature boundary conditions.

In this paper we consider a more physically realistic version of
the work undertaken by Rees and Genç [1]. The porous layer will
consist of N identical porous sublayers, which are separated by
identical solid partitions, but these partitions have finite thickness.
A formula for the dispersion relation is obtained, account being ta-
ken of the temperature variations within the solid partitions. We
obtain neutral curves, mode shapes and the manner of the varia-
tion in the critical values as the governing parameters (namely
the diffusivity ratio, d, the thickness ratio, d, and the number of
porous sublayers, N) vary.

2. Governing equations

We consider the onset of convection in a horizontal porous
layer which consists of a number of identical porous sublayers of
thickness, H, which are separated by solid partitions each of thick-
ness, h. Thus while fluid may not pass from one sublayer to an-
other, conductive heat transfer may take place through the solid
partitions. A configuration which consists of three sublayers is de-
picted in Fig. 1.

It is assumed that the Boussinesq approximation is valid, that
the porous medium is homogeneous and isotropic, that the phases
are in local thermal equilibrium, and that the fluid motion satisfies
Darcy’s law in addition to the buoyancy effects. Given the above

dimensions, a general system of N porous sublayers has overall
height, H, given by

H ¼ NH þ ðN � 1Þh: ð1Þ

Dirichlet boundary conditions for temperature are applied on the
outer horizontal surfaces of the layer, as shown in Fig. 1, and the
continuity of both temperature and heat flux conditions are applied
at all interfaces. The governing equations are non-dimensionalised
by using H as the representative lengthscale, rather than H, and
by using the temperature drop across one sublayer, rather than
across the system as whole; this has the advantage of yielding much
easier comparisons between cases which consist of different num-
bers of sublayers, particularly the classical single-layer Darcy–
Bénard problem. Given that we are performing a linear stability
analysis in an unbounded horizontal layer, all three-dimensional
modes may be decomposed into sums or integrals of two-dimen-
sional roll cells. Here, we present our analysis in terms of two-
dimensional equations. The non-dimensional governing equations
for the problem considered herein are given by (see [13]),
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for porous sublayer j, where 1 6 j 6 N, and by
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for solid layer, j where 1 6 j 6 N � 1, and where j is the diffusivity
ratio, as/apm. In the above, Ra is the Darcy–Rayleigh number which
is defined according by

Nomenclature

A, B, C, D constants
A⁄, B⁄ constants
CHF constant heat flux
CT constant temperature
d conductivity ratio
d vector defined in (30)
g gravity
h height of the solid partitions
H height of the porous sublayers
H height of the compsite layer
k disturbance wavenumber
ks thermal conductivity of solid
kpm thermal conductivity of porous medium
K permeability
M;N 4 � 4 matrices
N number of porous sublayers
p pressure
Ra Darcy–Rayleigh number
t time
T temperature of solid
T disturbance in T
u horizontal velocity
v vector of coefficients
w vertical velocity
x horizontal coordinate
z vertical coordinate

Greek symbols
a thermal diffusivity
b thermal expansion coefficient
c constant
d thickness ratio
DT temperature scaled
h temperature of porous medium
H disturbance in h
j diffusivity ratio
k constant
l dynamic viscosity
q density
r constant
w streamfunction
W disturbance streamfunction

Subscripts and superscripts
c cold boundary
h hot boundary
j sublayer index
pm porous medium
s solid phase
0 derivative with respect to z
1,2,. . . sublayer indices
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