Accepted Manuscript

Superior Activity of CeO_2 Modified V_2O_5 /AC Catalyst for Mercury Removal at Low Temperature

Youcai Zhu, Xiaojin Han, Zhanggen Huang, Yaqin Hou, Yaoping Guo, Minghong Wu

PII: \$1385-8947(17)31829-6

DOI: https://doi.org/10.1016/j.cej.2017.10.115

Reference: CEJ 17899

To appear in: Chemical Engineering Journal

Received Date: 24 May 2017 Revised Date: 12 October 2017 Accepted Date: 18 October 2017

Please cite this article as: Y. Zhu, X. Han, Z. Huang, Y. Hou, Y. Guo, M. Wu, Superior Activity of CeO₂ Modified V₂O₅/AC Catalyst for Mercury Removal at Low Temperature, *Chemical Engineering Journal* (2017), doi: https://doi.org/10.1016/j.cej.2017.10.115

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Superior Activity of CeO_2 Modified V_2O_5 /AC Catalyst for Mercury Removal at Low Temperature

Youcai Zhu^{a,b}, Xiaojin Han^{b,*}, Zhanggen Huang^b, Yaqin Hou^{b,c}, Yaoping Guo^{b,c}, Minghong Wu^{a,*}

^a School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China

^b State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan Shanxi, 030001, PR China

^c University of Chinese Academy of Sciences, Beijing 100049, PR China

Abstract

CeO₂ modified V_2O_5/AC catalysts (V-Ce/AC) were synthesized by an ultrasound-assisted impregnation method, and were employed to remove elemental mercury (Hg⁰) from simulated coal combustion flue gas at low temperature (100-200 °C). The effects of several operation conditions, including the loading of CeO₂, reaction temperature, the role of O₂ and stability of the catalysts were all investigated, respectively. The results showed that 1V-8Ce/AC catalysts had the highest catalytic activity with 98.3 % Hg⁰ removal efficiency at 150 °C. There was synergistic effect on Hg⁰ oxidation when V_2O_5 and CeO₂ combined. Characterization

E-mail: hanxj@sxicc.ac.cn (X. Han); mhwu@shu.edu.cn (M. Wu)

1

^{*} Corresponding authors. Tel.: +86-351-4048310

Download English Version:

https://daneshyari.com/en/article/6580490

Download Persian Version:

https://daneshyari.com/article/6580490

<u>Daneshyari.com</u>