Accepted Manuscript

Preparation, characterization, and application of multiple stimuli-responsive rattle-type magnetic hollow molecular imprinted poly (ionic liquids) nanospheres (Fe₃O₄@void@PILMIP) for specific recognition of protein

Jie-Ping Fan, Jia-Xin Yu, Xue-Meng Yang, Xue-Hong Zhang, Tian-Tao Yuan, Hai-Long Peng

PII: S1385-8947(17)32281-7

DOI: https://doi.org/10.1016/j.cej.2017.12.159

Reference: CEJ 18320

To appear in: Chemical Engineering Journal

Received Date: 7 October 2017
Revised Date: 7 December 2017
Accepted Date: 31 December 2017

Please cite this article as: J-P. Fan, J-X. Yu, X-M. Yang, X-H. Zhang, T-T. Yuan, H-L. Peng, Preparation, characterization, and application of multiple stimuli-responsive rattle-type magnetic hollow molecular imprinted poly (ionic liquids) nanospheres (Fe₃O₄@void@PILMIP) for specific recognition of protein, *Chemical Engineering Journal* (2017), doi: https://doi.org/10.1016/j.cej.2017.12.159

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Preparation, characterization, and application of multiple stimuli-responsive rattle-type magnetic hollow molecular imprinted poly (ionic liquids) nanospheres (Fe $_3$ O $_4$ @void@PILMIP) for specific recognition of protein

Jie-Ping Fan^{a,b,*}, Jia-Xin Yu^a, Xue-Meng Yang^a, Xue-Hong Zhang^c, Tian-Tao Yuan^a, and Hai-Long Peng^a

^a School of Resource, Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China. ^b Key Laboratory of Poyang Lake Ecology and Bio-Resource Utilization of Ministry of Education, Nanchang University, Nanchang 330031, China. ^c School of Foreign Language, Nanchang University, Nanchang 330031, China.

*Correspondence to: Jie-Ping Fan (jasperfan@163.com).

Abstract: For specific recognition of protein, novel rattle-type magnetic hollow molecular imprinted poly (ionic liquids) nanospheres have been prepared, and bovine serum albumin was selected as the model protein. The rattle-type magnetic Fe₃O₄@void@PILMIP nanospheres were synthesized by the hard templating method, and characterized by SEM, TEM, FTIR, TGA, and VSM. The as-prepared Fe₃O₄@void@PILMIP nanospheres could be responsive to external magnetic field, environmental temperature and pH. The results of adsorption isotherm and kinetics showed that the Fe₃O₄@void@PILMIP nanospheres possessed good recognition and high adsorption capacity of bovine serum albumin. The selective and competitive recognition experiments indicated that the Fe₃O₄@void@PILMIP nanospheres could selectively recognize bovine serum albumin compared with other proteins (bovine hemoglobin, ovalbumin and lysozyme).

Keywords: Rattle-type structure; Ionic liquid; Molecular imprinted polymer; Protein; Multiple stimuli-responsive.

1

Download English Version:

https://daneshyari.com/en/article/6580557

Download Persian Version:

https://daneshyari.com/article/6580557

<u>Daneshyari.com</u>