Accepted Manuscript

A mussel-induced method to fabricate reduced graphene oxide/ halloysite nanotubes membranes for multifunctional applications in water purification and oil/ water separation

Yucheng Liu, Wenwen Tu, Mingyan Chen, Lili Ma, Bing Yang, Qingling Liang, Yuanyuan Chen

PII: DOI: Reference:	S1385-8947(17)32151-4 https://doi.org/10.1016/j.cej.2017.12.043 CEJ 18204
To appear in:	Chemical Engineering Journal
Received Date:	9 October 2017
Revised Date:	6 December 2017
Accepted Date:	9 December 2017

Please cite this article as: Y. Liu, W. Tu, M. Chen, L. Ma, B. Yang, Q. Liang, Y. Chen, A mussel-induced method to fabricate reduced graphene oxide/ halloysite nanotubes membranes for multifunctional applications in water purification and oil/water separation, *Chemical Engineering Journal* (2017), doi: https://doi.org/10.1016/j.cej. 2017.12.043

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1	A mussel-induced method to fabricate reduced graphene oxide/
2	halloysite nanotubes membranes for multifunctional
3	applications in water purification and oil/water separation
4	Yucheng Liu ¹ *, Wenwen Tu ¹ , Mingyan Chen ¹ , Lili Ma ¹ , Bing
5	Yang ¹ , Qingling Liang ¹ , Yuanyuan Chen ¹
6 7	1 College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, P R of China
8	Abstract
9	In this work, a reduced graphene oxide/halloysite nanotubes (RGO/HNTs)
10	membrane was synthesized via polydopamine (PDA) modification and
11	assembly on the surface of commercial cellulose acetate (CA) membrane
12	constituting a PDA/RGO/HNT-CA membrane. The PDA/RGO/HNTs was
13	characterized by X-ray diffraction (XRD), X-ray photoelectron
14	spectroscopy (XPS), Fourier transform infrared (FT-IR) spectroscopy, and
15	transmission electron microscopy (TEM). In addition, scanning electron
16	microscopy (SEM) and atomic force microscopy (AFM) were used to
17	detect the surface morphology structure and roughness of composite
18	membranes, respectively. A hydrophilicity experiment demonstrated that
19	the flux of PDA/RGO/HNT membrane was dramatically improved with
20	an increasing HNT ratio and the retention rates of Methylene Blue (MB),
21	Congo Red (CR), Cu^{2+} , and Cr^{3+} were 99.72%, 99.09%, 99.74% and

^{1*} Corresponding author: Yucheng Liu.

School of Chemistry and Chemical engineering, Southwest Petroleum University, Chengdu 610500, China

E-mail addresses:rehuo2013@sina.cn

Download English Version:

https://daneshyari.com/en/article/6580605

Download Persian Version:

https://daneshyari.com/article/6580605

Daneshyari.com