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a b s t r a c t

We develop an extension of our previous thermal instability analysis of a nanofluid-saturated porous
layer. The extension is based on a new boundary condition for the nanoparticle fraction, which is phys-
ically more realistic. In the previous model we imposed both temperature and nanoparticle volume frac-
tions at the boundaries of the layer. It is now assumed that the value of the temperature can be imposed
on the boundaries, but the nanoparticle fraction adjusts so that the nanoparticle flux is zero on the
boundaries. The new boundary condition on the nanoparticle volume fraction is made possible by
accounting for the contributions of the effect of thermophoresis to the nanoparticle flux. It is shown that,
with the new boundary conditions, oscillatory convection cannot occur. The effect of the nanoparticles on
non-oscillatory convection is destabilizing.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of the onset of convection in a horizontal layer
occupied by a porous medium uniformly heated from below is a
classical problem commonly known as the Horton–Rogers–Lap-
wood problem or Bénard–Darcy problem. Work on this problem
has been surveyed in Chapter 6 of the book by Nield and Bejan [1].

An extension to the case of a nanofluid, based on a model pre-
sented by Buongiorno [2], in which the effects of Brownian motion
and thermophoresis are taken into account, was made by Nield and
Kuznetsov [3]. In their paper it was assumed that one could control
the value of the nanoparticle fraction at the boundary in the same
way as the temperature there could be controlled. However, since
the development of the model presented in [3], it became apparent
that in practice controlling the nanoparticle volume fraction on the
boundaries may be difficult. Thus it is advisable to replace the
boundary conditions used in [3] by a set that are more realistic
physically. In the present paper we revisit this problem, and we
now assume that there is no nanoparticle flux at the plate and that
the particle fraction value there adjusts accordingly. This change
has important consequences. The scaling of dimensionless param-
eters needs changing. The basic solution for the nanoparticle vol-
ume fraction is changed, and conclusions are changed. No longer
are there two opposing agencies affecting instability and hence
oscillatory instability is ruled out.

We have submitted a companion paper revising our paper on
the corresponding problem in a fluid clear of solid material [4].

2. Analysis

The analysis follows closely that in [3] and so it is abbreviated
as far as possible here.

We select a coordinate frame in which the z⁄-axis is aligned ver-
tically upwards. We consider a horizontal layer of a porous med-
ium of porosity e and permeability K confined between the
planes z⁄ = 0 and z⁄ = H. Asterisks are used to denote dimensional
variables. Each boundary wall is assumed to be impermeable and
perfectly thermally conducting. The temperatures at the lower
and upper walls are taken to be T�h and T�c , respectively, T�h being
greater than T�c . For simplicity, Darcy’s law is assumed to hold
and the Oberbeck–Boussinesq approximation is employed. Homo-
geneity and local thermal equilibrium in the porous medium is as-
sumed. The reference temperature is taken to be T�c . In the linear
theory being applied here the temperature change in the fluid is
assumed to be small in comparison with T�c . The Darcy velocity is
denoted by v⁄. The field equations for total mass, momentum, ther-
mal energy, and nanoparticles, respectively, take the form

r� � v� ¼ 0; ð1Þ

0 ¼ �r�p� � l
K

v� þ /�qp þ ð1� /�Þfqð1� bðT� � T�cÞÞg
h i

g; ð2Þ
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ðqcÞm
@T�

@t�
þ ðqcÞf v� � r�T� ¼ kmr�2T�

þ eðqcÞp DBr�/� � r�T�½
þðDT=T�cÞr�T� � r�T�

�
; ð3Þ

@/�

@t�
þ 1

e
v� � r�/� ¼ DBr�2/� þ DT=T�c

� �
r�2T�: ð4Þ

We write v⁄ = (u⁄, v⁄, w⁄). We assume that the temperature is con-
stant and the nanoparticle flux is zero on the boundaries. Thus
the boundary conditions are

w� ¼ 0; T� ¼ T�h; DB
@/�

@z�
þ DB

T1

@T�

@z�
¼ 0 at z� ¼ 0; ð5Þ

w� ¼ 0; T� ¼ T�c ; DB
@/�

@z�
þ DB

T1

@T�

@z�
¼ 0 at z� ¼ H: ð6Þ

We introduce dimensionless variables as follows. We define

ðx; y; zÞ ¼ ðx�; y�; z�Þ=H; t ¼ t�am=rH2;

ðu;v ;wÞ ¼ ðu�;v�;w�ÞH=am;

p ¼ p�K=lam; / ¼ /� � /�0
/�0

; T ¼ T� � T�c
T�h � T�c

; ð7Þ

where /�0 is a reference scale for the nanopartical fraction and

am ¼
km

ðqcPÞf
; r ¼ ðqcPÞm

ðqcPÞf
: ð8Þ

Then Eqs. (1)–(6) take the form:

r � v ¼ 0; ð9Þ

0 ¼ �rp� v � Rmêz þ RaTêz � Rn/êz; ð10Þ

@T
@t
þ v � rT ¼ r2T þ NB

Le
r/ � rT þ NANB

Le
rT � rT; ð11Þ

1
r
@/
@t
þ 1

e
v � r/ ¼ 1

Le
r2/þ NA

Le
r2T; ð12Þ

w ¼ 0; T ¼ 1;
@/
@z
þ NA

@T
@z
¼ 0 at z ¼ 0; ð13Þ

w ¼ 0; T ¼ 0;
@/
@z
þ NA

@T
@z
¼ 0 at z ¼ 1: ð14Þ

Here

Le ¼ am

DB
; ð15Þ

Ra ¼ qgbKHðT�h � T�cÞ
lam

; ð16Þ

Rm ¼
qp/

�
1 þ qð1� /�1Þ

h i
gKH

lam
; ð17Þ

Rn ¼
ðqp � qÞ/�0gKH

lam
; ð18Þ

NA ¼
DTðT�h � T�cÞ

DBT�c/
�
0

; ð19Þ

NB ¼
eðqcÞp
ðqcÞf

/�0: ð20Þ

The parameter Le is a Lewis number and Ra is the familiar ther-
mal Rayleigh–Darcy number. The parameters Rm and Rn may be
regarded as a basic-density Rayleigh number and a concentration
Rayleigh number, respectively. The parameter NA is a modified dif-
fusivity ratio and is somewhat similar to the Soret parameter that
arises in cross-diffusion phenomena in solutions, while NB is a
modified particle-density increment.

By extending the Oberbeck–Boussinesq approximation, Eq. (10)
has been linearized by the neglect of a term proportional to the
product of / and T. We believe that this assumption will be valid
in the case of small temperature gradients in a dilute suspension
of nanoparticles.

Nomenclature

c nanofluid specific heat at constant pressure
DB Brownian diffusion coefficient
DT thermophoretic diffusion coefficient
H dimensional layer depth
km effective thermal conductivity of the porous medium
Le Lewis number, defined by Eq. (15)
NA modified diffusivity ratio, defined by Eq. (19)
NB modified particle-density increment, defined by Eq. (20)
p⁄ pressure
p dimensionless pressure, p�K=lam

Ra thermal Rayleigh-Darcy number, defined by Eq. (16)
Rm basic-density Rayleigh number, defined by Eq. (17)
Rn concentration Rayleigh number, defined by Eq. (18)
t⁄ time
t dimensionless time, t�am=rH2

T⁄ nanofluid temperature
T dimensionless temperature, T��T�c

T�h�T�c
T�c temperature at the upper wall
T�h temperature at the lower wall
(u,v,w) dimensionless Darcy velocity components, (u⁄, v⁄ ,w⁄)H/

am

v Darcy velocity, ev
v⁄ dimensional Darcy velocity, (u⁄, v⁄, w⁄)

(x,y,z) dimensionless Cartesian coordinates, (x⁄, y⁄, z⁄)/H; z is
the vertically-upward coordinate

(x⁄,y⁄,z⁄) Cartesian coordinates

Greek symbols
a dimensionless wavenumber
am thermal diffusivity of the porous medium, km

ðqcPÞf
l viscosity of the fluid
q fluid density
(qc)m effective heat capacity of the porous medium
qp nanoparticle mass density
r parameter defined by Eq. (8)
/⁄ nanoparticle volume fraction
/�0 reference value for nanoparticle volume fraction
/ relative nanoparticle volume fraction, /��/�0

/�0

Superscripts
⁄ dimensional variable
0 perturbation variable

Subscript
b basic solution
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