
Mass transfer during radial oscillations of gas bubbles in viscoelastic
mediums under acoustic excitation

Yuning Zhang ⇑, Shengcai Li
School of Engineering, University of Warwick, Coventry CV4 7AL, UK

a r t i c l e i n f o

Article history:
Received 26 February 2013
Received in revised form 2 October 2013
Accepted 7 October 2013
Available online 31 October 2013

Keywords:
Rectified mass diffusion
Thermal effect
Gas bubble
Viscoelastic medium
Acoustic cavitation
Voigt model

a b s t r a c t

The generation of acoustic cavitation in viscoelastic mediums (e.g. human or animal tissue) is an essential
topic for facilitating non-invasive therapeutic ultrasonic treatment of serious diseases (e.g. tumors). In
present paper, mass transfer during radial oscillations of gas bubbles in viscoelastic mediums under
acoustic excitation is theoretically investigated and influences of several parameters (e.g. shear modulus,
saturation condition and viscosity) on the mass diffusion across bubble interfaces are discussed. The
characteristics of acoustic cavitation generated in vivo are also explained based on our predictions by
re-visiting the pioneering studies in the field. Comparing with previous predictions in the literature,
our predictions reveal that values of maximum bubble sizes growing through mass diffusion is larger
and required time reaching above maximum bubble size is longer, suggesting that medium viscoelastic-
ity is one of paramount parameters for predicting mass diffusion of cavitation bubbles in tissue.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

When gas bubbles in mediums are irradiated by acoustic waves,
gas bubbles will oscillate owing to the pressure changes in the
mediums caused by the acoustic excitation. During oscillations of
gas bubbles, not only the interface area and volume of gas bubbles
but also pressure and gas concentration inside gas bubbles change.
Furthermore, the oscillating gas bubbles can also generate radial
fluid flow within surrounding mediums, which will influence gas
diffusion across bubble interface according to the gas diffusion
equation. Therefore, the bubbles will grow or dissolve under acous-
tic excitation, termed as ‘‘rectified mass diffusion’’, which has been
investigated both theoretically and experimentally by many
researchers over several decades [1–35]. For reviews of this topic,
readers are referred to [10,17]. Rectified mass diffusion serves as
a paramount mechanism in many physical (e.g. bubble sonolumi-
nescence [22–24]), chemical (e.g. sonochemistry [27]) and biomed-
ical (e.g. transdermal transport of molecules [28]) processes.
Recently, generation of cavitation bubbles through rectified mass
diffusion in viscoelastic mediums (e.g. human or animal tissues)
is more and more involved such as cavitation assisted non-invasive
therapeutic ultrasonic treatment of serious diseases (e.g. tumors).
For some cases, encapsulated microbubbles are employed to

strength cavitation activities [36]. For details of modeling of encap-
sulated microbubbles, readers are referred to Doinikov and Bou-
akaz [36].

For cavitation-effect non-invasive therapy, generation of cavita-
tion through rectified mass diffusion in viscoelastic medium (e.g.
human tissues) is usually involved [37]. Generation of acoustic
cavitation in vivo through rectified mass diffusion has been demon-
strated by many researchers both experimentally [14,15] and the-
oretically [9]. In a pioneer work by ter Haar and Daniels [14], a
guinea-pig limb was irradiated using continuous ultrasound and
a pulse echo ultrasonic imaging technique was used to visualize
both moving and stationary bubbles of diameters down to
10 lm. Crum and Hansen [9] proposed that rectified mass diffusion
is the primary mechanism for the bubble growth under irradiation
of ultrasound in vivo observed by ter Haar and Daniels [14] and ter
Haar et al. [15]. In Crum and Hansen [9], the non-Newtonian prop-
erties of the tissue of the limb tested in [14] were neglected and
the limb tissue was assumed as Newtonian fluids with surface
tension coefficient modified. For some recent studies using
Crum–Hansen approach, readers are referred to Lavon et al. [28].
Crum and Hansen [9] further noticed that the maximum bubble
diameter and time required for the gas bubble growing to the max-
imum size are both far below those observed during experiments
in [14]. Due to the highly complex nature of the problem, the rea-
son for the above discrepancy is still not clear until now. In present
paper, influences of viscoelastic effects of tissue on predictions of
rectified mass diffusion are discussed.
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Bubble dynamics in non-Newtonian mediums is a classic topic
and has been intensively studied by many researchers [38–42].
Specifically, mass transfer across bubble interfaces in the absence
of acoustic excitation has been well explored in the literature
[43–49]. In this paper, a theoretical analysis of acoustically induced
mass transfer across bubble interfaces in viscoelastic mediums
(e.g. tissues) is presented. The influences of paramount parameters
(e.g. viscoelasticity) on the gas bubble rectified mass diffusion are
shown and discussed. Predictions based on present model with vis-
coelasticity are also compared with previous predictions [9] in the
literature based on a model for rectified mass diffusion of gas bub-
bles in Newtonian mediums. The whole paper is organized as fol-
lows: Section 2 introduces the basic equations to be solved for
the rectified mass diffusion phenomenon; Section 3 investigates
the natural frequency and damping mechanisms during radial
oscillations of gas bubbles in viscoelastic medium with numerical
validations and demonstrating examples; Section 4 shows the ana-
lytical solution of rectified mass diffusion in viscoelastic mediums
and influences of several paramount parameters on this phenome-
non; Section 5 summarizes the concluding remarks of the present
papers.

2. Basic equations

In this section, basic equations governing radial oscillations of
gas bubbles in viscoelastic mediums under acoustic excitation will
be introduced. Problems relating with radial oscillations of spher-
ical gas bubbles oscillating in infinite viscoelastic mediums are to
be solved. The relationship between the instantaneous volume
and the inner pressure of the gas bubbles is described by the poly-
tropic model. For convenience, energy dissipation through heat
transfer across bubble interfaces is represented by an effective
thermal viscosity. The equation of bubble motion is the generalized
Keller-Miksis equation [50] such as
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Here, R is the instantaneous bubble radius; the overdot denotes the
time derivative; cl is the speed of sound in the liquid; ql is the den-
sity of the liquid; t is the time; Pin is the instantaneous pressure at
the gas side of bubble wall; r is the surface tension coefficient; P0 is
the ambient pressure; PA is the amplitude of the driving sound field;
x is the angular frequency of the driving sound field; r is the radial
coordinate; srr is the stress in the radial direction; R0 is the equilib-
rium bubble radius; j is the polytropic exponent; lth is the effective
thermal viscosity. For convenience, the phase of external acoustic
excitation (Eq. (2)) is ignored. For completeness, an effective ther-
mal viscosity is further introduced in Eq. (3) by us based on [50]
to consider energy dissipation through heat transfer across bubble
interfaces. To close Eq. (2), a linear Voigt model is chosen as consti-
tutive equation such as [50]
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Here, G is the shear modulus; ll is the viscosity of the liquid; crr is
the strain. Combining Eqs. (2)–(5), one can obtain [50]

Nomenclature

Roman letters
c concentration of the gas in the liquid
cl speed of sound in the liquid
C0 saturation concentration of the gas in the liquid
Ci initial uniform concentration of the gas in the liquid and

also the concentration of the gas in the liquid at infinity
Cs concentration of the gas in the liquid at the bubble wall
D diffusion constant
Dg,v thermal diffusivity of the gas defined at constant vol-

ume
f frequency of the driving sound field
G shear modulus
kH Henry’s constant
Mg molecular weight of the gas in the bubble
P0 ambient pressure
PA acoustic pressure amplitude
Pin instantaneous pressure at the gas side of bubble wall
PT threshold of acoustic pressure amplitude of rectified dif-

fusion
r radial coordinate
R instantaneous bubble radius
_R first derivative of the instantaneous bubble radius
€R second derivative of the instantaneous bubble radius
R0 equilibrium bubble radius
Rg universal gas constant
t time
T period of applied acoustic excitation
T1 ambient temperature in the liquid

u velocity of the liquid
x non-dimensional perturbation of the instantaneous

bubble radius
_x first time derivative of x
€x second time derivative of x

Greek letters
bac acoustic damping constant
bth thermal damping constant
btot total damping constant
bvis viscous damping constant
c ratio of specific heats of gas
crr strain
e non-dimensional amplitude of driving sound field
j polytropic exponent
ll viscosity of the liquid
lth effective thermal viscosity
qg density of the gas
ql density of the liquid
r surface tension coefficient
srr stress in the radial direction
u a function related with the solution of bubble interior

problem
x angular frequency of the driving sound field
x0 natural frequency of oscillating gas bubbles
xr resonance frequency corresponding to the maximum

amplitude of steady-state gas bubble oscillations
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