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a b s t r a c t

The present paper discusses steady three dimensional flow and heat transfer of viscous fluid on a rotating
disk stretching in radial direction. Using Lie group theory symmetries of the governing equations are cal-
culated. Imposing restrictions from the boundary conditions it is shown that the similarity in the problem
can be achieved for two types of radially stretching velocities namely; linear and power-law. Linear
stretching has already been discussed in the literature; however power-law stretching is discussed here
for the first time. Using new similarity transformations, the governing partial differential are transformed
into a system of ordinary differential equations which are later treated both analytically and numerically.
Exact analytical solutions are found for the case of pure stretching and the large stretching parameter
case, for power-law stretching index n = 3. Numerical solutions are obtained for combined effects of
stretching and rotation for all values of n using Keller box method. Comparison of numerical solution
with the corresponding analytical solution (for n = 3) shows an excellent agreement. The quantities of
physical interest, such as azimuthal and radial skin friction and also Nusselt number are presented and
discussed physically.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The study of flow field due to a rotating disk has found many
applications in different fields of engineering and industry. A num-
ber of real processes can be undertaken using disk rotation such as:
fans, turbines, centrifugal pumps, rotors, viscometers, spinning
disk reactors and other rotating bodies. The history of rotating disk
flows goes back to the celebrated paper by Von Karman [1] who
initiated the study of incompressible viscous fluid over an infinite
plane disk rotating with a uniform angular velocity. This model is
further investigated by many researchers to provide analytical
and numerical results for better understanding of the fluid behav-
ior due to rotating disks.

The use of similarity transformations to convert governing Na-
vier Stokes equations for axi-symmetric flow into a system of cou-
pled nonlinear ordinary differential equations was originated by
Von Karman [1] and the numerical results for these equations were
presented by Cochran [2]. Millsaps and Pohlhausen [3] considered
the effects of heat transfer over a rotating disk at a constant tem-
perature. Awad [4] presented an asymptotic model to analyze

the heat transfer phenomena over a rotating disk for large Prandtl
numbers.

Finding exact solutions for the Navier–Stokes equations is of
fundamental importance in understanding and development of
fluid mechanics. Von Karman and Lin [5] gave the mathematical
proof for the existence of exact solutions and Von Karman firstly
presented the exact solutions for the flow over a rotating disk
which is now a part of many classical textbooks [6–9]. The exact
solutions for heat and mass transfer over a permeable rotating disk
were presented by Turkyilmazoglu [10].

The flow due to stretching surfaces has important applications
in manufacturing industries; especially in the extrusion of metals
and plastics [11–13]. The exact analytical solution for steady linear
stretching of a surface was given by Crane [14]. Wang [15] ex-
tended this problem to the three-dimensional case. Rashidi and
Pour [16] found approximate analytical solutions for the flow
and heat transfer over a stretching sheet using Homotopy Analysis
Method. The steady flow over a rotating and stretching disk was
initially proposed by Fang [17]. Recently, Fang and Zhang [18]
studied the flow between two stretching disks. More recently,
the combined effects of magnetohydrodynamic on radially stretch-
ing disk were analyzed by Turkyilmazoglu [19]. We observe that all
of these studies were undertaken for linear radial stretching veloc-
ities. Gupta and Gupta [20] identified that stretching of the sheet
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may not necessarily be linear in real situations. The power-law
stretching velocity was thus undertaken by Banks [21] and
Ali [22].

Lie group analysis is a systematic way of finding the invariant or
self-similar solutions of a system of partial differential equations.
The method is capable of providing a deep insight into the under-
lying physical problems-described by partial differential equations.
The applications of Lie group analysis are twofold: Producing a new
solution from an existing solution or finding similarity solution of
partial differential equation. The focus in the present paper is on
the latter type of the application. Starting from the Sophus Lie
(1842–1899), this technique is extensively used for finding solu-
tion of differential equations [23–25]. Jalil et al. [26] applied this
method to find possible similarity transformation for the mixed
convection flow over a stretching surface. They extended their
work to flow of non-Newtonian fluids [27,28], by finding self sim-
ilar solution of the governing equations, using Lie group analysis.
Hamad et al. [29] investigated the combined effects of heat and
mass transfer by Lie group analysis over a moving surface. Ferdows
et al. [30] applied the method of one parameter continuous group
theory to investigate mixed convection over horizontal moving
porous flat plate. Recently, Ferdows et al. [31] used a special form
of Lie group of transformation (scaling transformation) to study the
convective effects of heat and mass transfer over a radiating
stretching sheet.

The aim of this paper is to analyze the flow and heat transfer
over a rotating disk that is stretching in the radial direction. This
work is significant due to the following reasons (a) Finding of all
possible similarity transformation for the problem using Lie group
analysis. This leads us to discover the similarity transformations
for linear stretching and power-law stretching. The linear stretch-
ing for rotating disk has already been available in the literature
while the power-law stretching is worked out for the first time.
(b) Using new similarity transformations the governing partial dif-
ferential equations are transformed to self similar ordinary differ-
ential equations. Exact analytical solutions are found for pure
stretching case and the case of large stretching parameter for
power-law stretching index n = 3. (c) The numerical solutions for
the combined effects of power-law stretching and rotation are
obtained, for all n, employing the Keller box method [32]. To
support the numerical results comparison between the exact
analytical and numerical results, for pure stretching, is presented
in the form of tables and figures. An excellent agreement is found
between the two solutions. The effects of controlling parameters
on the physical quantities are analyzed and discussed in detail.

2. Mathematical formulation

Let us consider a three dimensional laminar flow of a steady
incompressible fluid over a rotating disk, which has a constant
angular velocity X. The disk is stretching in radial direction with
velocity uwð~rÞ. The governing Navier–Stokes equations and energy
equation with the corresponding boundary conditions for an axi-
symmetric flow and heat transfer in cylindrical coordinates are gi-
ven by [33]:

1
~r
@ð~r~uÞ
@~r
þ @

~w
@~z
¼ 0; ð1Þ

~u
@~u
@~r
þ ~w

@~u
@~z
�

~v2

~r
¼ � 1

q
@~p
@~r
þ m

@2~u
@~r2 þ

1
~r
@~u
@~r
þ @

2~u
@~z2 �

~u
~r2

( )
; ð2Þ

~u
@~v
@~r
þ ~w

@~v
@~z
þ

~u~v
~r
¼ m

@2 ~v
@~r2 þ

1
~r
@~v
@~r
þ @

2 ~v
@~z2 �

~v
~r2

( )
; ð3Þ

~u
@ ~w
@~r
þ ~w

@ ~w
@~z
¼ � 1

q
@~p
@~z
þ m

@2 ~w
@~r2 þ

1
~r
@ ~w
@~r
þ @

2 ~w
@~z2

( )
; ð4Þ

~u
@~T
@~r
þ ~w

@~T
@~z
¼ aT

@2~T
@~r2 þ

1
~r
@~T
@~r
þ @

2 ~T

@~z2

( )
; ð5Þ

~z ¼ 0; ~u ¼ aX~ruwð~r=RÞ; ~v ¼ X~rvwð~r=RÞ; ~w ¼ 0; ~T ¼ ~Tw

~z!1; ~u ¼ 0 ; ~v ¼ 0; ~T ¼ ~T1:
ð6Þ

In the above equations ~u; ~v and ~w are the components of velocity in
~r; ~h and ~z directions, q is the fluid density, aT(=k/qCp) is the thermal
diffusivity and ~pis the pressure. The parameter a is a constant
known as disk stretching parameter.

3. Boundary layer equations

A pragmatic approach to find boundary layer equations is to
introduce non-dimensional variables in the governing Eqs. (1)–
(6). We consider the following non-dimensional variables for cur-
rent problem
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where Re ¼ X R2

v is Reynolds number, R is the reference length and T0

is the reference temperature. It is noteworthy that the correspond-
ing scales in the axial direction are smaller by a factor Re�1/2, thus
implicitly anticipating that Re� 1. Now the governing Eqs. (1)–
(6) are converted to dimensionless form given as
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z ¼ 0; u ¼ a r uwðrÞ; v ¼ r vwðrÞ; w ¼ 0; T ¼ Tw

z!1; u ¼ 0 ; v ¼ 0; T ¼ 0: ð13Þ

where Pr = m/aT is the Prandtl number.
For high Reynolds number, i.e. Re ?1, the resulting boundary

layer equations in dimensionless form are obtained as follows
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