Accepted Manuscript

Catalytic combustion of toluene over mesoporous Cr_2O_3 -supported platinum catalysts prepared by *in situ* pyrolysis of MOFs

Xi Chen, Xi Chen, Songcai Cai, Jin Chen, Wenjian Xu, Hongpeng Jia, Jing Chen

PII:	\$1385-8947(17)31806-5
DOI:	https://doi.org/10.1016/j.cej.2017.10.091
Reference:	CEJ 17875
To appear in:	Chemical Engineering Journal
Received Date:	14 May 2017
Revised Date:	12 October 2017
Accepted Date:	16 October 2017

Please cite this article as: X. Chen, X. Chen, S. Cai, J. Chen, W. Xu, H. Jia, J. Chen, Catalytic combustion of toluene over mesoporous Cr₂O₃-supported platinum catalysts prepared by *in situ* pyrolysis of MOFs, *Chemical Engineering Journal* (2017), doi: https://doi.org/10.1016/j.cej.2017.10.091

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Catalytic combustion of toluene over mesoporous Cr₂O₃-supported platinum catalysts prepared by *in situ* pyrolysis of MOFs

Xi Chen^{a,b}, Xi Chen^{a,b}, Songcai Cai^{a,b}, Jin Chen^a, Wenjian Xu^a, Hongpeng Jia^{a,b,*}, Jing Chen^{c,d,*}

^a CAS Center for Excellence in Regional Atmospheric Environment, and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China

^b University of Chinese Academy of Sciences, Beijing, 100049, China

^cXiamen Institute of Rare-earth Materials, Haixi institutes, Chinese Academy of Sciences, Xiamen 361021, China ^d Fujian Institute of Research on the Structure of Mater, Chinese Academy of Sciences, Fuzhou 350002, China

*Corresponding authors.

Tel.: +86 592 6190767 (H. Jia), +86 592 6377717 (J. Chen)

E-mail addresses: hpjia@iue.ac.cn (H. Jia); jing.chen@fjirsm.ac.cn (J. Chen).

ABSTRACT

Three-dimensional penetrating Pt-loaded mesoporous Cr₂O₃ catalysts (Pt@M-Cr₂O₃) were synthesized by pyrolysis of MIL-101-Cr containing pre-impregnated Pt NPs. Physicochemical properties of the samples were characterized by means of various techniques including XRD, Raman, BET, SEM, TEM, XPS and H₂-TPR, and their catalytic activities were evaluated by toluene combustion compared with commercial Cr₂O₃ (C-Cr₂O₃). It is found that mesoporous Cr_2O_3 (M- Cr_2O_3) support with a high surface area of 77.40 m²/g is composed of vast Cr_2O_3 nanocrystallites. With pre-impregnated Pt loading in MIL-101-Cr, it partly restrains the aggregation of Pt NPs during the pyrolysis of MOFs to M-Cr₂O₃ and strengthens the interaction between Pt NPs and Cr₂O₃ nanocrystallites. The obtained 0.82Pt@M-Cr₂O₃ exhibits the best catalytic performance of toluene combustion, giving 120, 140 and 144 °C of $T_{10\%}$, $T_{50\%}$ and $T_{90\%}$ under 1000 ppm of toluene at space velocity of 20000 mL/(g h), respectively. The investigation of the different space velocity, the catalytic stability and the effect of water vapor on catalytic activity over 0.82Pt@M-Cr₂O₃ have confirmed the good catalytic performance. Furthermore, the studies of in situ DRIFTS indicate toluene degradation over 0.82Pt@M-Cr₂O₃ is via benzoate species by rapidly transforming of benzylic and aldehydic species, and then oxidized to maleic anhydride in an aromatic-ring opening reaction, finally is decayed to CO_2 and H_2O .

Download English Version:

https://daneshyari.com/en/article/6581061

Download Persian Version:

https://daneshyari.com/article/6581061

Daneshyari.com