Accepted Manuscript

Heterogeneous photocatalytic degradation of ibuprofen in ultrapure water, municipal and pharmaceutical industry wastewaters using a TiO₂/UV-LED system

Nabil Jallouli, Luisa M. Pastrana-Martínez, Ana R. Ribeiro, Nuno F.F. Moreira, Joaquim L. Faria, Olfa Hentati, Adrián M.T. Silva, Mohamed Ksibi

PII: S1385-8947(17)31751-5

DOI: https://doi.org/10.1016/j.cej.2017.10.045

Reference: CEJ 17829

To appear in: Chemical Engineering Journal

Received Date: 13 June 2017

Revised Date: 18 September 2017 Accepted Date: 10 October 2017

Please cite this article as: N. Jallouli, L.M. Pastrana-Martínez, A.R. Ribeiro, N.F.F. Moreira, J.L. Faria, O. Hentati, A.M.T. Silva, M. Ksibi, Heterogeneous photocatalytic degradation of ibuprofen in ultrapure water, municipal and pharmaceutical industry wastewaters using a TiO₂/UV-LED system, *Chemical Engineering Journal* (2017), doi: https://doi.org/10.1016/j.cej.2017.10.045

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

CCEPTED MANUSCRIPT

Heterogeneous photocatalytic degradation of ibuprofen in ultrapure water, municipal

and pharmaceutical industry wastewaters using a TiO2/UV-LED system

Nabil Jallouli¹, Luisa M. Pastrana-Martínez², Ana R. Ribeiro², Nuno F.F. Moreira²,

Joaquim L. Faria², Olfa Hentati¹, Adrián M.T. Silva² and Mohamed Ksibi¹*

¹ University of Sfax, Laboratory of Environmental Engineering and Ecotechnology, National

School of Engineers of Sfax (ENIS), Route of Soukra Km 3.5 Po. Box 1173, 3038 Sfax,

Tunisia.

² Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials

(LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-

465 Porto, Portugal.

*Corresponding author: Mohamed Ksibi. Tel.: +216 74 677637; Fax.: +216 74674364.

E-mail address: mohamed.ksibi@isbs.rnu.tn

Abstract

Degradation and mineralization of ibuprofen (IBU) were investigated using Ultraviolet (UV)

Light Emitting Diodes (LEDs) in TiO₂ photocatalysis. Samples of ultrapure water (UP) and a

secondary treated effluent of a municipal wastewater treatment plant (WWTP), both spiked

with IBU, as well as a highly concentrated IBU (230 mg L⁻¹) pharmaceutical industry

wastewater (PIWW), were tested in the TiO₂/UV-LED system. Three operating parameters,

namely, pH, catalyst load and number of LEDs were optimized. The process efficiency was

evaluated in terms of IBU removal using high performance liquid chromatography (HPLC) and

ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-

MS/MS). Additionally, the mineralization was investigated by determining the dissolved

organic carbon (DOC) content. The chemical structures of transformation products were

1

Download English Version:

https://daneshyari.com/en/article/6581075

Download Persian Version:

https://daneshyari.com/article/6581075

<u>Daneshyari.com</u>