Accepted Manuscript

CO₂ Capture Using Triamine-Grafted SBA-15: The Impact of the Support Pore Structure

Masoud Jahandar Lashaki, Abdelhamid Sayari

PII: S1385-8947(17)31819-3

DOI: https://doi.org/10.1016/j.cej.2017.10.103

Reference: CEJ 17887

To appear in: Chemical Engineering Journal

Received Date: 24 August 2017 Revised Date: 13 October 2017 Accepted Date: 17 October 2017

Please cite this article as: M.J. Lashaki, A. Sayari, CO₂ Capture Using Triamine-Grafted SBA-15: The Impact of the Support Pore Structure, *Chemical Engineering Journal* (2017), doi: https://doi.org/10.1016/j.cej.2017.10.103

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

CO₂ Capture Using Triamine-Grafted SBA-15:

The Impact of the Support Pore Structure

Masoud Jahandar Lashaki and Abdelhamid Sayari*

Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5

Abstract

The impact of the support pore structure on the CO₂ adsorption performance of triamine-tethered SBA-15 silica was studied. Six SBA-15 silica supports with different pore sizes and intrawall pore volumes were synthesized, followed by triamine functionalization through dry and wet grafting (i.e., with and without added water). CO₂ adsorption measurements showed the positive impact of support large pore size and high intrawall pore volume on adsorptive properties, with the former being dominant. Large-pore supports exhibited the highest surface density of amine groups (up to 35 µmol/m²), highest CO₂ uptakes (up to 1.88 mmol CO₂/g) and CO₂/N ratios (up to 0.33 mol CO₂/mol N), and fastest adsorption kinetics. When the intrawall pore volume decreased by 53% for samples with identical pore sizes, lower CO₂ uptakes (up to 63%) and CO₂/N ratios (up to 62%), and slower adsorption kinetics were observed, particularly for the lowest adsorption temperature (i.e., 25 °C). It was inferred that large pore size and/or high intrawall pore volume of the support improve the adsorptive properties via enhanced amine accessibility. Large-pore supports also allowed higher surface amine density to be achieved because of reduced steric hindrance between grafted triamine species.

^{*} Corresponding Author. Email: abdel.sayari@uottawa.ca; Tel: 613-562-5483 (A. Sayari)

Download English Version:

https://daneshyari.com/en/article/6581103

Download Persian Version:

https://daneshyari.com/article/6581103

<u>Daneshyari.com</u>