Accepted Manuscript

Photo-fenton degradation of a beverage industrial effluent: intensification with persulfate and the study of radicals

Antonio J. Expósito, José M. Monteagudo, Irene Díaz, Antonio Durán

PII: S1385-8947(16)31122-6

DOI: http://dx.doi.org/10.1016/j.cej.2016.08.048

Reference: CEJ 15614

To appear in: Chemical Engineering Journal

Received Date: 13 April 2016 Revised Date: 6 August 2016 Accepted Date: 9 August 2016

Please cite this article as: A.J. Expósito, J.M. Monteagudo, I. Díaz, A. Durán, Photo-fenton degradation of a beverage industrial effluent: intensification with persulfate and the study of radicals, *Chemical Engineering Journal* (2016), doi: http://dx.doi.org/10.1016/j.cej.2016.08.048

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

PHOTO-FENTON DEGRADATION OF A BEVERAGE INDUSTRIAL EFFLUENT:

INTENSIFICATION WITH PERSULFATE AND THE STUDY OF RADICALS

Antonio J. Expósito, José M. Monteagudo, Irene Díaz, Antonio Durán*

IMAES Group. INEI. Department of Chemical Engineering. ETSII. University of Castilla-La Mancha. Avda.

Camilo José Cela 3. 13071. Ciudad Real (Spain). Fax: 34 926295361. Phone: 34 926295300, ext: 3814. email:

antonio.duran@uclm.es

ABSTRACT

An industrial wastewater effluent from the beverage industry has been treated in a pilot plant

using a photo-Fenton process, which was intensified with persulfate. Under optimal

conditions in a photo-Fenton process, 53% mineralization was achieved after two hours. The

remaining Total Organic Carbon (TOC) was mainly composed of acetate and formate, whose

decarboxylation was limited via hydroxyl radical reactions. Thus, persulfate (PS) was added

to the system after 2 hours to obtain a more efficient decarboxylation by sulfate radicals (SR,

SO₄•). Different conditions were studied to activate PS (UV-C, thermal, Fe(II) and H₂O₂).

The hydroxyl radical concentration in the solution was also measured, which supports the

results in the sulfate-radical-based process.

The combined treatment with UV-C irradiation and thermally activated persulfate enhanced

the mineralization efficiency. Under the best conditions, 76 % mineralization was achieved in

4 hours: photo-Fenton reaction (UV-C/Fe(II)/H₂O₂) was achieved in the first two hours and

UV-C/Fe(II)/H₂O₂/PS/thermal in the second two hours (65°C) (pH = 2.9, [H₂O₂]= 4000 mg/L;

[Fe(II)]= 375 mg/L). Strong inhibition of the oxidation of Fe(III)-oxalic complexes in the last

stage of the treatment is not probable because its removal by precipitation does not improve

the mineralization rate. Thus, the low reactivity of acetic acid and the formation of oxalic acid

are responsible for the slow mineralization at the end of the process. The formation of

undesirable chlorinated oxidation products is also improbable.

Keywords: industrial wastewater; persulfate; photo-Fenton; radical measurement

1

Download English Version:

https://daneshyari.com/en/article/6581329

Download Persian Version:

https://daneshyari.com/article/6581329

<u>Daneshyari.com</u>