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a b s t r a c t

A one-phase Stefan problem with latent heat a power function of position is investigated. The second
kind of boundary condition is involved, and the surface heat flux is considered as a corresponding power
function of time. The problem can be viewed as a special case of the shoreline movement problem under
the conditions of nonlinear variation of ocean depth and a surface flux that varies as a power of time. An
exact solution is constructed using the similarity transformation technique. Theoretical proof for the
existence and the uniqueness of the exact solution is conducted. Solutions for some special cases
presented in the literature are recovered. In the end, computational examples of the exact solution are
presented, and the results can be used to verify the accuracy of general numerical phase change
algorithms.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

There are many problems that involve a moving boundary in
industrial processes, and this type of problem is usually named
as the Stefan problem (or the moving boundary problem). Many
analytical and numerical solutions for these problems can be found
in the monographs [1–5].

Recently, a special type of Stefan problem with space-depen-
dent latent heat attracts much attention. This type of problem
generally arises from the study of the shoreline movement.
Numerical solutions can be found in [6–7]. Voller et al. [8]
presented an exact solution for a one-phase Stefan problem with
linearly distributed latent heat. Lorenzo-Trueba et al. [9] general-
ized Voller’s problem by considering the nonlinearity of the
diffusivity and the appearance of two moving boundaries; they
presented analytical solutions for simple cases and numerical solu-
tions for the general condition. Salva et al. [10] extended Voller’s
solution to a two-phase Stefan problem, and they also considered
the linearly distributed latent heat.

Motivated by these works, we consider a one-phase Stefan
problem with latent heat a power function of position. Mathemat-
ical equations for this problem are given by
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where T is the temperature, x is the position coordinate, t is the time
coordinate, s(t) is the moving interface, v is the thermal diffusion
coefficient, k is the thermal conductivity, ct(n-1)/2 is the time-varying
surface heat flux (c > 0 for melting, c < 0 for freezing), cxn is the
variable latent heat per unit volume (c > 0 for melting, c < 0 for
freezing), n is an arbitrary non-negative integer, and the phase-tran-
sition temperature is zero.

The Stefan problem described by Eqs. 1,2,3,4can be viewed as a
special case of the shoreline movement problem under the
conditions of nonlinear variation of ocean depth and a surface flux
that varies as a power of time. In this problem, time-dependent
surface flux of the form (3) is considered so that a similarity
solution can be obtained; this is similar to Lombardi & Tarzia
[11], in which the authors also uses the time-dependent surface
flux in arriving a closed-form solution.

The main objective of this paper is to obtain an exact solution
for the one-phase Stefan problem presented by Eqs. 1,2,3,4.
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Section 2 constructs an exact solution using the similarity transfor-
mation technique, proves the existence and the uniqueness of the
solution, and recovers solutions of some special cases. Section 3
presents computational examples of the exact solution, followed
by Section 4, with some conclusions.

2. Exact solution

2.1. Solution procedure

Using the similarity transformation

f ðgÞ ¼ Tðx; tÞ
tn=2 ;with g ¼ x

2
ffiffiffiffiffi
mt
p ð5Þ

The partial differential equation for T(x, t) becomes the following or-
dinary differential equation for f(g)

f 00 þ 2gf 0 � 2nf ¼ 0 ð6Þ

The solution for this ordinary differential equation can be written as

f ðgÞ ¼ AinerfcðgÞ þ Binerfcð�gÞ ð7Þ

where A and B are arbitrary real constants, inerfc( � ) are the repeated
integrals of the complementary error function [12] defined by
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p
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Therefore the solution for Eq. (1) can be written as
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The above solution can also be verified from page 52 of the Carslaw
and Jaeger text book [13] and Zhou [14].

In order to satisfy Eqs. (2,3), the moving interface must be given
in the following form

sðtÞ ¼ 2k
ffiffiffiffiffi
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p

ð11Þ

where k is a constant to be determined.
From Eq. (2) and (10), one obtains

AinerfcðkÞ þ Binerfcð�kÞ ¼ 0 ð12Þ

From Eq. (3) and (10), one obtains
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The coefficients A, B can be expressed by
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where
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is the gamma function

EnðkÞ ¼ ½inerfcðkÞ þ inerfcð�kÞ�=2 ð17Þ

The equation for the coefficient k can be constructed from Eq. (4)
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Once k is determined from Eq. (18), the exact solution for the one-
phase Stefan problem presented by Eqs. 1,2,3,4 can be obtained
from Eqs. (10), (11), (14), (15).

2.2. Existence and uniqueness

The exact solution for Eqs. 1,2,3,4 is constructed in Section 2.1.
However, there remains the problem for the existence and the
uniqueness of k, and this problem can be solved by analyzing the
monotonicity of the functions at the two sides of Eq. (18).

For the case n = 0, Eq. (18) becomes much simpler (Eq. (31) in
Section 2.3); the existence and the uniqueness of k can be proved
easily. For the cases n P 1, the proof is given below.

For convenience, we denote the left hand side of Eq. (18) as LðkÞ,
and the right hand side of Eq. (18) as RðkÞ.For L( � ), it is easy to
prove that

Lð0Þ ¼ 0; Lðþ1Þ ¼ þ1; L0ðkÞ > 0; 8k > 0 ð19Þ

For RðkÞ,
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where

R1ðkÞis the numerator of RðkÞ; ð21Þ

Fn�1ðkÞ ¼ dEnðkÞ=dk ¼ ½in�1erfcð�kÞ � in�1erfcðkÞ�=2 > 0; 8k
> 0 ð22Þ

The recurrence formula for the repeated integrals of the comple-
mentary error function is

in�2erfcðeÞ � 2ein�1erfcðeÞ � 2ninerfcðeÞ ¼ 0 ð23Þ

Using the recurrence formula, Eq. (20) can be transformed to

R0ðkÞ ¼ � k
n
½in�2erfcð�kÞin�1erfcðkÞ

þ in�1erfcð�kÞin�2erfcðkÞ�=EnðkÞ � R1ðkÞFn�1ðkÞ=E2
nðkÞ

< 0 ð24Þ

For k = 0,
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Since
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We have
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Eqs. (24), (25), (28) indicate that the right hand side of Eq. (18) is a
strictly decreasing function, and it decreases from 2i0(n-1) to 0 with k
increasing from 0 to1; Eq. (19) indicates that the left hand side of
Eq. (18) is a strictly increasing function, and it increases from 0 to1
with k increasing from 0 to 1. Therefore there exists unique posi-
tive solution for Eq. (18).

2.3. Special cases

From references [13–14], we know that Eq. (10) is a solution of
Eq. (1). By substituting Eqs. (10),(11) into Eqs. (2),(3),(4), the
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