International Journal of Heat and Mass Transfer 63 (2013) 65-81

Contents lists available at SciVerse ScienceDirect

International Journal of Heat and Mass Transfer

journal homepage: www.elsevier.com/locate/ijhmt

Entransy theory for the optimization of heat transfer – A review and update

HEAT and M

Qun Chen, Xin-Gang Liang, Zeng-Yuan Guo*

Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China

ARTICLE INFO

Article history: Received 4 December 2012 Received in revised form 25 February 2013 Accepted 2 March 2013 Available online 22 April 2013

Keywords: Heat transfer Optimization Entransy Entropy Constructal law

ABSTRACT

Heat transfer optimization methods to effectively improve heat transfer performance is of great importance for energy conservation and pollution reduction. A recently developed heat transfer optimization method based on entransy theory and related peer-reviewed papers published between 2003 and 2010 are reviewed and updated in this paper to describe entransy, entransy dissipation, optimization criteria and optimization principles and their applications to different heat transfer modes (thermal conduction, convection and radiation) and to different levels (heat transfer element, heat exchanger, and heat exchanger network). Entransy theory is then compared with entropy theory in several aspects, including the heat transfer purpose, irreversibility and optimization principle for energy savings or weight reductions of thermal facilities. Finally, entransy theory is also compared with constructal theory in terms of optimization objective, optimization method and optimized results.

© 2013 Elsevier Ltd. All rights reserved.

Contents

1.	Introd	duction	66
2.	Origir	n of entransy	67
	2.1.	Induction	67
	2.2.	Deduction.	68
3.	Entra	ansy dissipation and entransy balance equation for heat transfer processes	68
	3.1.	Heat conduction	68
	3.2.	Heat convection	69
	3.3.	Thermal radiation	69
	3.4.	Heat transfer processes in two-fluid heat exchangers	69
4.	Optin	nization of heat transfer processes	70
	4.1.	Optimization objectives of heat transfer processes	70
	4.2.	Optimization principles for heat transfer processes	70
		4.2.1. Heat conduction	70
		4.2.2. Heat convection	71
		4.2.3. Thermal radiation	71
	4.3.	Optimization criteria for heat transfer processes	71
		4.3.1. Heat conduction	71
		4.3.2. Heat convection	72
		4.3.3. Thermal radiation	73
		4.3.4. Heat transfer processes in two-fluid heat exchangers	73
5.	Applie	ications of the entransy theory	73
	5.1.	Volume-point heat conduction	73
	5.2.	Laminar forced convection in a round tube	73
	5.3.	Forced turbulent convection between two parallel plates	74
	5.4.	Thermal radiation between parallel plates	75
6.	Differ	rences between the entransy theory and the entropy theory for optimization	75

* Corresponding author. Tel.: +86 10 62782660. E-mail address: demgzy@tsinghua.edu.cn (Z.-Y. Guo).

^{0017-9310/\$ -} see front matter \circledast 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.03.019

Nomenclature

A, B, C,	C_0, A', B', C', C'_0 Lagrange multipliers	\dot{q}_e	electrical current density, A m^{-2}
С	speed of light in vacuum, m s ^{-2}	Re	Reynolds number
c_p	constant pressure specific heat capacity, J kg ⁻¹ K ⁻¹	R_h	thermal resistance, K/W
Cv	constant volume specific heat capacity, J kg ⁻¹ K ⁻¹	S _q	internal heat source, W m ⁻³
E _e	electrical potential energy in a capacitor, J	Shg	internal entransy source, W K m ⁻³
E_g	gravitational potential energy of fluid in a vessel, J	S _g	entropy generation rate, W K^{-1}
$\bar{E_h}$	potential energy of a phonon gas, J	Śg	entropy generation rate per unit area during thermal
e _h	density of potential energy of a phonon gas, J m ^{-3}		radiation, W K^{-1} m ⁻²
ė _h	pontential energy flux of a phonon gas, W m $^{-2}$	Т	temperature, K
F	additional volume force for laminar heat transfer, N m ⁻³	U	internal energy, J
F_t	additional volume force for turbulent heat transfer,	Ue	electrical potential, V
	$N m^{-3}$	U_h	thermal potential, K
f	friction factor	U_{hr}	radiative heat flux potential, W m^{-2}
Ğ	entransy, J K	Ũ	velocity vector, m s^{-1}
g	specific entransy, $[K m^{-3}]$; gravitational acceleration,	$\overrightarrow{U_h}$	velocity vector of a phonon gas, m s^{-1}
-	m s ⁻²	V	volume, m ³
ġ	entransy flux, W K m ⁻²	u, v, w	velocity components in x, y and z directions, m s ⁻¹
ġŗ	radiative entransy flux, $W^2 m^{-4}$	x, y, z	Cartesian coordinates, m
Н	height, m		
	$1 \cdot 1 \cdot$		
Κ	heat exchanger heat transfer coefficient, W m ² K	Greek sv	rmbols
K k	heat exchanger heat transfer coefficient, W m $^{-1}$ K $^{-1}$	Greek sy ε	mbols emissivity
K k k _e	heat exchanger heat transfer coefficient, W m 2 K 1 thermal conductivity, W m $^{-1}$ K $^{-1}$ electrical conductivity, S m $^{-1}$	Greek sy ε n	mbols emissivity uniformity factor for a temperature difference field
K k k _e M	heat exchanger heat transfer coefficient, W m 2 K 1 thermal conductivity, W m $^{-1}$ K $^{-1}$ electrical conductivity, S m $^{-1}$ mass, kg	Greek sy ε η λ	mbols emissivity uniformity factor for a temperature difference field Lagrange multiplier
K k k _e M M	heat exchanger heat transfer coefficient, W m 2 K 1 thermal conductivity, W m $^{-1}$ K $^{-1}$ electrical conductivity, S m $^{-1}$ mass, kg mass flow rate, kg s $^{-1}$	Greek sy ε η λ μ	mbols emissivity uniformity factor for a temperature difference field Lagrange multiplier dynamic viscosity, kg m ⁻¹ s ⁻¹
K k M M M _h	heat exchanger heat transfer coefficient, W m 2 K 1 thermal conductivity, W m $^{-1}$ K $^{-1}$ electrical conductivity, S m $^{-1}$ mass, kg mass flow rate, kg s $^{-1}$ thermomass, kg	Greek sy ε η λ μ ο	mbols emissivity uniformity factor for a temperature difference field Lagrange multiplier dynamic viscosity, kg m ⁻¹ s ⁻¹ density. kg m ⁻³
K k M M M _h Nu	heat exchanger heat transfer coefficient, W m 2 K 1 thermal conductivity, W m $^{-1}$ K $^{-1}$ electrical conductivity, S m $^{-1}$ mass, kg mass flow rate, kg s $^{-1}$ thermomass, kg Nusselt number	Greek sy ε η λ μ ρ	mbols emissivity uniformity factor for a temperature difference field Lagrange multiplier dynamic viscosity, kg m ⁻¹ s ⁻¹ density, kg m ⁻³ thermomass density, kg m ⁻³
K k M M M _h Nu ñ	heat exchanger heat transfer coefficient, W m 2 K 1 thermal conductivity, W m $^{-1}$ K $^{-1}$ electrical conductivity, S m $^{-1}$ mass, kg mass flow rate, kg s $^{-1}$ thermomass, kg Nusselt number unit vector	Greek sy ε η λ μ ρ ρ _h σ	mbols emissivity uniformity factor for a temperature difference field Lagrange multiplier dynamic viscosity, kg m ⁻¹ s ⁻¹ density, kg m ⁻³ thermomass density, kg m ⁻³ Stefan-Boltzmann constant. W m ⁻² K ⁻⁴
K k M M M Nu ñ P	heat exchanger heat transfer coefficient, W m 2 K 1 thermal conductivity, W m $^{-1}$ K $^{-1}$ electrical conductivity, S m $^{-1}$ mass, kg mass flow rate, kg s $^{-1}$ thermomass, kg Nusselt number unit vector pressure, Pa	Greek sy ε η λ μ ρ ρ h σ τ	mbols emissivity uniformity factor for a temperature difference field Lagrange multiplier dynamic viscosity, kg m ⁻¹ s ⁻¹ density, kg m ⁻³ thermomass density, kg m ⁻³ Stefan-Boltzmann constant, W m ⁻² K ⁻⁴ time. s: viscous force. N m ⁻²
K k M M M Nu n P Pr	heat exchanger heat transfer coefficient, W m 2 K 1 thermal conductivity, W m $^{-1}$ K $^{-1}$ electrical conductivity, S m $^{-1}$ mass, kg mass flow rate, kg s $^{-1}$ thermomass, kg Nusselt number unit vector pressure, Pa Prandtl number	Greek sy ε η λ μ ρ ρ h σ τ Φ σ	mbols emissivity uniformity factor for a temperature difference field Lagrange multiplier dynamic viscosity, kg m ⁻¹ s ⁻¹ density, kg m ⁻³ thermomass density, kg m ⁻³ Stefan–Boltzmann constant, W m ⁻² K ⁻⁴ time, s; viscous force, N m ⁻² entransy dissipation rate, W K
K k M M M Nu n P Pr Q _{ve}	heat exchanger heat transfer coefficient, W m 2 K 1 thermal conductivity, W m $^{-1}$ K $^{-1}$ electrical conductivity, S m $^{-1}$ mass, kg mass flow rate, kg s $^{-1}$ thermomass, kg Nusselt number unit vector pressure, Pa Prandtl number electrical charge stored in a capacitor, C	Greek sy ε η λ μ ρ ρ_h σ τ $\dot{\Phi}_g$ $\dot{\phi}_e$	mbols emissivity uniformity factor for a temperature difference field Lagrange multiplier dynamic viscosity, kg m ⁻¹ s ⁻¹ density, kg m ⁻³ thermomass density, kg m ⁻³ Stefan-Boltzmann constant, W m ⁻² K ⁻⁴ time, s; viscous force, N m ⁻² entransy dissipation rate, W K dissipation rate per unit volume of the potential energy
K k M M M Nu n P Pr Q _{ve} Q _{vh}	heat exchanger heat transfer coefficient, W m 2 K 1 thermal conductivity, W m $^{-1}$ K $^{-1}$ electrical conductivity, S m $^{-1}$ mass, kg mass flow rate, kg s $^{-1}$ thermomass, kg Nusselt number unit vector pressure, Pa Prandtl number electrical charge stored in a capacitor, C thermal energy stored in an incompressible body, J	$Greek sy \ arepsilon$ $\eta \ \lambda \ \mu \ ho_h \ \sigma \ au \ \dot{\phi}_g \ \dot{\phi}_e$	mbols emissivity uniformity factor for a temperature difference field Lagrange multiplier dynamic viscosity, kg m ⁻¹ s ⁻¹ density, kg m ⁻³ thermomass density, kg m ⁻³ Stefan–Boltzmann constant, W m ⁻² K ⁻⁴ time, s; viscous force, N m ⁻² entransy dissipation rate, W K dissipation rate per unit volume of the potential energy of a phonon gas, W m ⁻³
K k M M M Nu n P Pr Q _{ve} Q _{vh} Q	heat exchanger heat transfer coefficient, W m 2 K 2 thermal conductivity, W m $^{-1}$ K $^{-1}$ electrical conductivity, S m $^{-1}$ mass, kg mass flow rate, kg s $^{-1}$ thermomass, kg Nusselt number unit vector pressure, Pa Prandtl number electrical charge stored in a capacitor, C thermal energy stored in an incompressible body, J heat transfer rate, W	Greek sy ε η λ μ ρ ρ_h σ τ $\dot{\Phi}_g$ $\dot{\phi}_e$ $\dot{\phi}_{\sigma}$	mbols emissivity uniformity factor for a temperature difference field Lagrange multiplier dynamic viscosity, kg m ⁻¹ s ⁻¹ density, kg m ⁻³ thermomass density, kg m ⁻³ Stefan–Boltzmann constant, W m ⁻² K ⁻⁴ time, s; viscous force, N m ⁻² entransy dissipation rate, W K dissipation rate per unit volume of the potential energy of a phonon gas, W m ⁻³ entransy dissipation rate per unit volume, W K m ⁻³
K k M M M Nu n P Pr Q _{ve} Q _{vh} Q Q	heat exchanger heat transfer coefficient, W m 2 K 2 thermal conductivity, W m $^{-1}$ K $^{-1}$ electrical conductivity, S m $^{-1}$ mass, kg mass flow rate, kg s $^{-1}$ thermomass, kg Nusselt number unit vector pressure, Pa Prandtl number electrical charge stored in a capacitor, C thermal energy stored in an incompressible body, J heat transfer rate, W total heat exchange rate in a heat exchanger, W	Greek sy ε η λ μ ρ ρ_h σ τ $\dot{\Phi}_g$ $\dot{\phi}_e$. $\dot{\phi}_g$ $\dot{\phi}_m$	mbols emissivity uniformity factor for a temperature difference field Lagrange multiplier dynamic viscosity, kg m ⁻¹ s ⁻¹ density, kg m ⁻³ thermomass density, kg m ⁻³ Stefan–Boltzmann constant, W m ⁻² K ⁻⁴ time, s; viscous force, N m ⁻² entransy dissipation rate, W K dissipation rate per unit volume of the potential energy of a phonon gas, W m ⁻³ entransy dissipation rate per unit volume, W K m ⁻³ viscous dissipation rate per unit volume, W K m ⁻³
K k M M M Nu n P Pr Q _{ve} Q _{vh} Q Q t q	heat exchanger heat transfer coefficient, W m 2 K 1 thermal conductivity, W m $^{-1}$ K $^{-1}$ electrical conductivity, S m $^{-1}$ mass, kg mass flow rate, kg s $^{-1}$ thermomass, kg Nusselt number unit vector pressure, Pa Prandtl number electrical charge stored in a capacitor, C thermal energy stored in an incompressible body, J heat transfer rate, W total heat exchange rate in a heat exchanger, W heat flux, W m $^{-2}$	Greek sy ε η λ μ ρ ρ_h σ τ $\dot{\Phi}_g$ $\dot{\phi}_e$ $\dot{\phi}_g$ $\dot{\phi}_g$	mbols emissivity uniformity factor for a temperature difference field Lagrange multiplier dynamic viscosity, kg m ⁻¹ s ⁻¹ density, kg m ⁻³ thermomass density, kg m ⁻³ Stefan–Boltzmann constant, W m ⁻² K ⁻⁴ time, s; viscous force, N m ⁻² entransy dissipation rate, W K dissipation rate per unit volume of the potential energy of a phonon gas, W m ⁻³ entransy dissipation rate per unit volume, W K m ⁻³ viscous dissipation rate per unit volume, W m ⁻³
K k M M Nu n P Pr Q _{ve} Q _{vh} Q Q t q	heat exchanger heat transfer coefficient, W m 2 K 2 thermal conductivity, W m $^{-1}$ K $^{-1}$ electrical conductivity, S m $^{-1}$ mass, kg mass flow rate, kg s $^{-1}$ thermomass, kg Nusselt number unit vector pressure, Pa Prandtl number electrical charge stored in a capacitor, C thermal energy stored in an incompressible body, J heat transfer rate, W total heat exchange rate in a heat exchanger, W heat flux, W m $^{-2}$	Greek sy ε η λ μ ρ ρ_h σ τ $\dot{\phi}_g$ $\dot{\phi}_e$ $\dot{\phi}_g$ $\dot{\phi}_m$	mbols emissivity uniformity factor for a temperature difference field Lagrange multiplier dynamic viscosity, kg m ⁻¹ s ⁻¹ density, kg m ⁻³ thermomass density, kg m ⁻³ Stefan–Boltzmann constant, W m ⁻² K ⁻⁴ time, s; viscous force, N m ⁻² entransy dissipation rate, W K dissipation rate per unit volume of the potential energy of a phonon gas, W m ⁻³ entransy dissipation rate per unit volume, W K m ⁻³ viscous dissipation rate per unit volume, W m ⁻³
K k M M Nu n P Pr Q _{ve} Q _{vh} Q Q t q	heat exchanger heat transfer coefficient, W m ² K ¹ thermal conductivity, W m ⁻¹ K ⁻¹ electrical conductivity, S m ⁻¹ mass, kg mass flow rate, kg s ⁻¹ thermomass, kg Nusselt number unit vector pressure, Pa Prandtl number electrical charge stored in a capacitor, C thermal energy stored in an incompressible body, J heat transfer rate, W total heat exchange rate in a heat exchanger, W heat flux, W m ⁻²	Greek sy ε η λ μ ρ ρ_h σ τ $\dot{\phi}_g$ $\dot{\phi}_g$ $\dot{\phi}_g$ $\dot{\phi}_m$	mbols emissivity uniformity factor for a temperature difference field Lagrange multiplier dynamic viscosity, kg m ⁻¹ s ⁻¹ density, kg m ⁻³ thermomass density, kg m ⁻³ Stefan–Boltzmann constant, W m ⁻² K ⁻⁴ time, s; viscous force, N m ⁻² entransy dissipation rate, W K dissipation rate per unit volume of the potential energy of a phonon gas, W m ⁻³ entransy dissipation rate per unit volume, W K m ⁻³ viscous dissipation rate per unit volume, W m ⁻³

	6.2. Convective heat transfer in a square cavity	76
	6.3. Thermal radiation between parallel plates	. 77
7.	Differences between the entransy theory and the constructal law	78
8.	Conclusions	78
	Acknowledgment	79
	References	79

1. Introduction

Heat transfer is thermal energy in transit due to a temperature difference, one of the most common physical phenomena in the world, especially in energy systems. Estimates of all the worldwide energy utilization suggest more than 80% involve heat transfer processes. Thus, improved heat transfer performance offers a huge potential for conserving energy and reducing CO_2 emission so as to reduce global warming [1,2]. During the past several decades, heat transfer science, dealing with analyses of heat transfer rates taking place in systems, has been well developed with a large number of heat transfer enhancement techniques developed to improve the performance of energy generation, conversion, consumption and conservation [1–13]. However, unlike thermodynamics, another thermal science subject, there is no concept of efficiency but only the concept of the heat transfer rate, so scientists and engineers often focus on heat transfer enhancement which is usually associ-

ated with increased pumping power and in turn usually reduces the energy utilization efficiency.

Heat transfer is an irreversible, non-equilibrium process from the thermodynamic viewpoint. In a key part of non-equilibrium thermodynamics [14], Onsager [15,16] set up the famous reciprocal relationships for non-equilibrium processes including heat transfer and derived the principle of the least dissipation of energy in terms of the entropy balance equation, where entropy generation is considered to be a measure of irreversibility. Prigogine [17] developed the minimum entropy production principle based on the idea that the entropy production in a thermal system at steady state had to be at the minimum. Both of these principles, however, did not deal with how to improve the heat transfer performance until Bejan [18-23] deduced an expression for the entropy generation to measure the irreversibility of convective heat transfer in viscous fluid flows. Thereafter, many scholars [24–46] have employed the minimum entropy generation as an objective function, and some of them also combined it with optimization

Download English Version:

https://daneshyari.com/en/article/658140

Download Persian Version:

https://daneshyari.com/article/658140

Daneshyari.com