Accepted Manuscript

Ni foams decorated with carbon nanotubes as catalytic stirrers for aerobic oxidation of cumene

Chunlin Mu, Kuntao Huang, Tianyuan Cheng, Hongjuan Wang, Hao Yu, Feng Peng

PII: \$1385-8947(16)31090-7

DOI: http://dx.doi.org/10.1016/j.cej.2016.08.016

Reference: CEJ 15582

To appear in: Chemical Engineering Journal

Received Date: 15 February 2016
Revised Date: 1 August 2016
Accepted Date: 3 August 2016

Please cite this article as: C. Mu, K. Huang, T. Cheng, H. Wang, H. Yu, F. Peng, Ni foams decorated with carbon nanotubes as catalytic stirrers for aerobic oxidation of cumene, *Chemical Engineering Journal* (2016), doi: http://dx.doi.org/10.1016/j.cej.2016.08.016

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Ni foams decorated with carbon nanotubes as catalytic stirrers for aerobic oxidation of cumene

Chunlin Mu, Kuntao Huang, Tianyuan Cheng, Hongjuan Wang, Hao Yu,* Feng Peng

School of Chemistry and Chemical Engineering, South China University of Technology,

Guangzhou 510640, China

Abstract

Carbon nanotubes (CNTs) have received intensive scientific interests as a metal-free catalyst for the oxidation reactions of hydrocarbons in the liquid phase. However, its application in the liquid reaction is limited by the costly catalyst filtration process. Herein, a structured CNT catalyst was fabricated via growing CNTs on Ni foams with a porous Al₂O₃ coating layer. The resultant structured CNTs were used both as catalysts and as stirrer in a rotating foam stirrer reactor. The catalytic performance was evaluated in the production of cumene hydroperoxide by the aerobic oxidation of cumene. Under optimized experimental conditions, the cumene conversion reached 25.1%, 14% higher than that of commercial CNTs in a slurry reactor. The excellent adhesion strength of CNTs on the foam and catalytic stability in 5 runs of recycling were demonstrated, opening a new way to employing CNTs as a metal-free catalyst in the liquid phase reactions.

* To whom correspondence should be addressed.

yuhao@scut.edu.cn (H Yu), Tel: +86 20 8711 4916, Fax: +86 20 8711 4916

1

Download English Version:

https://daneshyari.com/en/article/6581475

Download Persian Version:

https://daneshyari.com/article/6581475

<u>Daneshyari.com</u>