Accepted Manuscript

Rapid and effective removal of Cr(VI) from aqueous solutions using the FeCl₃/NaBH₄ system

Qun Liu, Mingjie Xu, Feng Li, Tao Wu, Yujiang Li

PII: S1385-8947(16)30391-6

DOI: http://dx.doi.org/10.1016/j.cej.2016.03.127

Reference: CEJ 14979

To appear in: Chemical Engineering Journal

Received Date: 30 December 2015 Revised Date: 5 March 2016 Accepted Date: 25 March 2016

Please cite this article as: Q. Liu, M. Xu, F. Li, T. Wu, Y. Li, Rapid and effective removal of Cr(VI) from aqueous solutions using the FeCl₃/NaBH₄ system, *Chemical Engineering Journal* (2016), doi: http://dx.doi.org/10.1016/j.cej. 2016.03.127

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Rapid and effective removal of Cr(VI) from aqueous solutions using the FeCl₃/NaBH₄ system

Qun Liu^a, Mingjie Xu^a, Feng Li^a, Tao Wu^b, Yujiang Li ^{a,*}

^a Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Jinan,

250100, PR China

^bKey Laboratory of Colloid & Interface Science of Education Ministry, Shandong

University, Jinan, 250100, PR China

* Correspondence author:

Yujiang Li: School of Environmental Science & Engineering, Shandong University,

Jinan, 250100, PR China

Tel/Fax: +86-531-88365922

E-mail: <u>yujiang@sdu.edu.cn</u>

Abstract

A new emergency treatment technology for rapid and effective removal of hexavalent chromium [Cr(VI)] from aqueous solutions by direct addition of ferric chloride (FeCl₃) and sodium borohydride (NaBH₄) in sequence to Cr(VI) solutions under magnetic stirring conditions was proposed in this study. Various reaction conditions, such as solution pH and Fe(III)/Cr(VI) and FeCl₃/NaBH₄ molar ratios were investigated. The results showed that 97.6-99.9% of 50 mg/L Cr(VI) can be removed from aqueous solutions within 3 min in the initial pH range of 3.5-6.0 with Fe(III)/Cr(VI) and FeCl₃/NaBH₄ molar ratios of 1.0:1 and 1:3.0 respectively at 298 K, which was significantly better than that of FeCl₃ and NaBH₄ alone. This indicated that a synergistic effect existed. Jar tests demonstrated that Cr(VI) was reduced to Cr(III) mainly by NaBH₄ under a strong acidic condition in which the hydrogen ions were largely provided by the hydrolysis of FeCl₃. In addition, co-precipitation of ferric and trivalent chromic ions occurred. The adsorption of ferric compounds also contributed to the loss of a relatively higher concentration of Cr(VI). Experimental results and

Download English Version:

https://daneshyari.com/en/article/6581803

Download Persian Version:

https://daneshyari.com/article/6581803

<u>Daneshyari.com</u>