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a b s t r a c t

In this work we derive an analytical solution given by Bessel series to the transient and one-dimensional
(1D) bioheat transfer equation in a multi-layer region with spatially dependent heat sources. Each region
represents an independent biological tissue characterized by temperature-invariant physiological param-
eters and a linearly temperature dependent metabolic heat generation. Moreover, 1D Cartesian, cylindri-
cal or spherical coordinates are used to define the geometry and temperature boundary conditions of
first, second and third kinds are assumed at the inner and outer surfaces. We present two examples of
clinical applications for the developed solution. In the first one, we investigate two different heat source
terms to simulate the heating in a tumor and its surrounding tissue, induced during a magnetic fluid
hyperthermia technique used for cancer treatment. To obtain an accurate analytical solution, we deter-
mine the error associated with the truncated Bessel series that defines the transient solution. In the sec-
ond application, we explore the potential of this model to study the effect of different environmental
conditions in a multi-layered human head model (brain, bone and scalp). The convective heat transfer
effect of a large blood vessel located inside the brain is also investigated. The results are further compared
with a numerical solution obtained by the Finite Element Method and computed with COMSOL Multi-
physics v4.1�.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The heat transfer in living tissues, known as bioheat transfer, is
a complex phenomenon that depends on the thermodynamics of
the biological system, its thermal constitutive parameters and
the thermal response to external stimulus, e.g., electromagnetic
or ultrasonic waves used in cancer treatments [1–4].

The study of bioheat transfer is especially relevant to the field of
thermal medicine, since experimental temperature data is not
extensively available. Temperature measurement techniques are
mostly invasive as well as expensive and provide a limited number
of measurement points. Non-invasive temperature measurement
techniques, such as magnetic resonance thermal imaging, allow
volumetric temperature measurements. However, they are limited
due to its high cost and low thermal resolution [3,5].

Several therapeutic applications based on the knowledge of bio-
heat transfer involve either raising or lowering temperature from

normal body temperature, namely, hyperthermia [1–3] and hypo-
thermia [4], respectively. Hyperthermia may be defined as raising
the temperature of a certain region of the body above normal for
a defined period of time, usually between 30 and 90 min [1]. The
most common techniques to induce hyperthermia are based on
heat deposition from electromagnetic [3,5] or ultrasound sources
[2], where the biological tissues convert the absorbed energy into
heat causing a temperature increase. Another approach to heat
generation involves injecting magnetic nanoparticles immersed
in fluid into the target tissue to absorb energy at a higher rate than
the surrounding tissue from an externally applied electromagnetic
field [6–9]. This technique is known as magnetic fluid hyperther-
mia (MFH).

The efficacy of hyperthermia for cancer therapy is dependent on
the delivery of well-controlled moderate heating (approximately
42 �C) to the entire tumor volume without overheating the sur-
rounding critical normal tissues [3,10]. This technique takes advan-
tage of the rapid neoplastic cell growth, which makes it more
sensitive to an increase of temperature [11]. To optimize new
hyperthermia based procedures, it is essential to develop a simpli-
fied but accurate model to estimate the temperature distribution
and highlight the overall effect of the various parameters.

0017-9310/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.11.082

⇑ Corresponding authors. Address: CEFITEC, Departamento de Física, Universid-
ade Nova de Lisboa 2829 516 Caparica, Portugal. Tel.: +351 212 948 576x10521;
fax: +351 212 948 549 (D.B. Rodrigues).

E-mail addresses: db.rodrigues@campus.fct.unl.pt, ppereira@deq.isel.ipl.pt (D.B.
Rodrigues).

International Journal of Heat and Mass Transfer 62 (2013) 153–162

Contents lists available at SciVerse ScienceDirect

International Journal of Heat and Mass Transfer

journal homepage: www.elsevier .com/locate / i jhmt

http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.11.082
mailto:db.rodrigues@campus.fct.unl.pt
mailto:ppereira@deq.isel.ipl.pt
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.11.082
http://www.sciencedirect.com/science/journal/00179310
http://www.elsevier.com/locate/ijhmt


In 1948, Pennes was the first to propose and validate experi-
mentally an analytical bioheat transfer model with a heat loss term
due to blood perfusion [12]. Besides perfusion, Pennes’ model also
accounted for thermal storage, heat conduction and heat genera-
tion caused by internal and/or external sources. Other accurate
bioheat transfer models have been suggested [13,14]. However,
Pennes’ model is the most widely used because of its simplicity
and acceptable accuracy if no large thermally significant blood ves-
sels are close to the analyzed heated region [12,13].

Solutions of the Pennes’ bioheat equation were obtained in
regions with Cartesian, cylindrical and spherical geometries
[6–8,15–18]. Durkee et al. derived an analytical solution of the
classical bioheat equation using eigenfunctions for spherical and
Cartesian coordinates in the reference [15] and cylindrical coordi-
nates in reference [16]. In both cases, a constant heat source term
was used. In reference [17] Durkee et al. used Green functions to
solve the classical bioheat equation for time dependent sources.
Continuity boundary conditions to the temperature and heat flow
were imposed at the interfaces. Moreover, Neumann and Robin
boundary conditions at the inner and outer surfaces were assumed,
respectively.

Bagaria and Johnson [7] used the method of separation of vari-
ables to obtain a transient and 1D solution to estimate the temper-
ature in two concentric spherical regions. They assumed that the
tumor was located in the inner region containing magnetic nano-
particles only with a polynomial distribution. On the other hand,
a source term described by an exponential function was validated
experimentally by Salloum et al. [9].

The purpose of this work is to derive an analytical solution to
the transient and one-dimensional Pennes’ bioheat equation in a
multi-layer region with generic spatially dependent heat sources.
Each region represents an independent biological tissue (e.g., skin,
fat or muscle) characterized by temperature-invariant physiologi-
cal parameters and linearly temperature dependent metabolic heat
generation. Moreover, 1D Cartesian, cylindrical or spherical coordi-
nates are used to define the geometry and continuity boundary
conditions are imposed to the temperature and heat flow between
adjacent layers. The inner and outer surfaces satisfy equations with
adaptable parameters that allow one to define Dirichlet, Neumann
and/or Robin boundary conditions.

This bioheat transfer model, which makes use of a formalism
previously described by Rodrigues et al. [19], is applied to obtain
the theoretical temperature profiles in the tumor bed and sur-
rounding healthy tissue using two spatially dependent heat source
terms to simulate a MFH treatment. We further explore the poten-
tial of this model to study the effect of different environmental
conditions in a multi-layered human head model (brain, bone
and scalp). The convective effect of a large blood vessel located in-
side the brain is also investigated assuming a laminar and fully
thermally developed blood flow.

Furthermore, we use two approaches to validate the analytical
solution. In the first one, we determine the error associated with
the truncated Bessel series that defines the transient solution

whereas in the second one we compare the analytical and numer-
ical solutions. These numerical solutions are obtained using the Fi-
nite Element Method (FEM) and computed with COMSOL
Multiphysics v4.1�.

2. Mathematical formulation

2.1. Pennes bioheat transfer equation

The bioheat transfer equation in a multi-layer region is given by
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with 1 6 i 6 n; r�i�1 6 r� 6 r�i ðn 2 NÞ and G = 0, 1 and 2 for problems
with 1D Cartesian, cylindrical and spherical symmetric geometries,
respectively. Note that the mathematical method prescribed here
works for a constant Q �mi ¼ Q �m0i

� �
or linearly temperature depen-

dent metabolic heat generation given by (3) with a slope denoted
by Q �msi [20].

The tissue temperature described by (1) is controlled by heat
storage qici @T�i =@t�

� �� �
, thermal conduction kir2T�i

� �
, dissipation

of heat through blood flow ðxbiqbcb T�a � T�i
� �

Þ and heat generation
P�i
� �

, which represents the contribution from volumetric heat gen-
eration, converted from some other form of energy such as electro-
magnetic, ultrasonic or other modes of heating. Metabolic heat
generation Q �mi

� �
is another type of heat input resulting from bio-

chemical conversion of energy within tissue [11,12].
As example, a region with n layers and a spherically symmetric

geometry is presented in Fig. 1. These layers correspond to biolog-
ical tissues (e.g., skin, fat and muscle) and r�0 can be equal to zero or
r�0 > 0 m to take into account air or liquid body regions as well as
catheters like those used in transurethral prostatic microwave
thermotherapy [21].

2.2. Boundary and initial conditions

Boundary conditions of first, second and third kinds to the tem-
perature at the inner and outer surfaces are assumed (see (4) and
(5)). Temperature and heat flow must satisfy continuity boundary
conditions at the tissue interfaces (see (6)–(9)). An initial spatially
dependent temperature is also considered (see (10)).

� Inner surface of 1st layer (i = 1)

A�in
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¼ C�in ð4Þ

Nomenclature

i tissue layer index
r⁄ spatial coordinate (m)
t⁄ time (s)
T�i temperature (K)
T�0i initial temperature (K)
T�a arterial blood temperature (K)
P�i internal heat generation (W m�3)

qi mass density (kg m�3)
ci specific heat capacity (J kg�1 K�1)
ki thermal conductivity (W m�1 K�1)
xbi blood perfusion (s�1)
qb mass density of blood (kg m�3)
cb specific heat capacity of blood (J kg�1 K�1)
Q�mi metabolic heat generation (W m�3)
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