Accepted Manuscript

Reasonable harmony of Ni and Mn in core@shell-structured NiMn@SiO₂ catalysts prepared for hydrogen production from ethanol steam reforming

Seung Won Jo, Byeong Sub Kwak, Kang Min Kim, Jeong Yeon Do, No-Kuk Park, Tae Jin Lee, Sang Tae Lee, Misook Kang

PII:	\$1385-8947(15)01703-9
DOI:	http://dx.doi.org/10.1016/j.cej.2015.12.032
Reference:	CEJ 14541
To appear in:	Chemical Engineering Journal
Received Date:	13 July 2015
Revised Date:	4 December 2015
Accepted Date:	13 December 2015

Please cite this article as: S.W. Jo, B.S. Kwak, K.M. Kim, J.Y. Do, N-K. Park, T.J. Lee, S.T. Lee, M. Kang, Reasonable harmony of Ni and Mn in core@shell-structured NiMn@SiO₂ catalysts prepared for hydrogen production from ethanol steam reforming, *Chemical Engineering Journal* (2015), doi: http://dx.doi.org/10.1016/j.cej.2015.12.032

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Reasonable harmony of Ni and Mn in core@shell-structured NiMn@SiO₂

catalysts prepared for hydrogen production from ethanol steam reforming

Seung Won Jo^a, Byeong Sub Kwak^a, Kang Min Kim^a, Jeong Yeon Do^a, No-Kuk Park^b, Tae Jin

Lee^b, Sang Tae Lee^c, Misook Kang^a*

^aDepartment of Chemistry, College of Science, ^bDepartment of Chemical Engineering, College of

Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea

^cWooshin Co. Jinryange-up, Gyeongsan, Gyeongbuk 38470, Republic of Korea

ABSTRACT

To improve the long term catalytic stability without catalytic deactivation during ethanol

steam reforming (ESR), this study considered two main areas; the role of the redox promoter of the

Mn component in a Ni-based catalyst and the stability of the core@shell structure. Five different core@shell $30Ni_xMn_y@70SiO_2$ catalysts were prepared and applied to the ESR reaction. The hydrogen selectivity was highest on the core@shell-structured $30Ni_{8.5}Mn_{1.5}@70SiO_2$ catalyst

compared to those of the other catalysts. During ESR, the amount of evolved CO gas, which is

Download English Version:

https://daneshyari.com/en/article/6582289

Download Persian Version:

https://daneshyari.com/article/6582289

Daneshyari.com