Accepted Manuscript

Self-reinforcing injectable hydrogel with both high water content and mechanical strength for bone repair

Xiao Bai, Shaoyu Lü, Zhen Cao, Chunmei Gao, Haogang Duan, Xiubin Xu, Lu Sun, Nannan Gao, Chen Feng, Mingzhu Liu

PII:	\$1385-8947(15)01684-8
DOI:	http://dx.doi.org/10.1016/j.cej.2015.12.021
Reference:	CEJ 14530
To appear in:	Chemical Engineering Journal
Received Date:	9 September 2015
Revised Date:	30 November 2015
Accepted Date:	4 December 2015

Please cite this article as: X. Bai, S. Lü, Z. Cao, C. Gao, H. Duan, X. Xu, L. Sun, N. Gao, C. Feng, M. Liu, Self-reinforcing injectable hydrogel with both high water content and mechanical strength for bone repair, *Chemical Engineering Journal* (2015), doi: http://dx.doi.org/10.1016/j.cej.2015.12.021

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1	Self-reinforcing injectable hydrogel with both high water content and mechanical strength
2	for bone repair
3	Xiao Bai ^a , Shaoyu Lü ^{a,*} , Zhen Cao ^b , Chunmei Gao ^a , Haogang Duan ^a , Xiubin Xu ^a , Lu Sun ^a ,
4	Nannan Gao ^a , Chen Feng ^a , Mingzhu Liu ^{a,*}
5	^a State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal
6	Chemistry and Resources Utilization of Gansu Province and Department of Chemistry, Lanzhou
7	University, Lanzhou 730000, People's Republic of China
8	^b School of stomatology, Lanzhou University, Lanzhou 730000, People's Republic of China
9	
10	ABSTRACT: The main challenge for constructing hydrogels serving as a temporary skeleton to
11	support body load in bone tissue engineering is its poor mechanical strength. Covalent
12	crosslinking is generally introduced in hydrogel to enhance its mechanical strength. However,
13	this strategy always results in comitant reduction in the water content. In this study, a self-
14	reinforcing injectable hydrogel based on noncovalent and Diels-Alder (DA) chemical dual
15	crosslinking is developed to improve both its mechanical strength and water content. The
16	noncovalent crosslinking is designed through the supramolecular interaction of cyclodextrin and
17	adamantane, and the sol-gel transition of poly(N-isopropyl acrylamide) (PNIPAM), enabling
18	hydrogel formation in situ after injection. DA chemical crosslinking occurs via furfurylamine
19	grafted chondroitin sulfate (ChS-F) and maleimido-terminated poly(ethylene glycol) (PEG-
20	AMI), increasing the mechanical strength of hydrogel (E \sim 25 MPa). In vivo bone repair tests

E-mail address: lshy@lzu.edu.cn, mzliu@lzu.edu.cn

^{*} Corresponding author. Tel.: +86-931-8912387; fax: +86-931-8912582

Download English Version:

https://daneshyari.com/en/article/6582510

Download Persian Version:

https://daneshyari.com/article/6582510

Daneshyari.com