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a b s t r a c t

The quasi-steady thermocapillary migration of a spherical fluid drop situated at an arbitrary position in a
second fluid within a spherical cavity is studied theoretically in the limit of negligible Mara ngoni and 
Reynolds numbers. The imposed temperature gradient is constant and along the line connecting the cen- 
ters of the drop and cavity. To solve the thermal and hydrodynamic governing equations, the general 
solutions are constructed from the fundamental solutions in the two spherical coordinate systems based 
on the drop and cavity. The boundary conditions at the drop surface and cavity wall are satisfied by a col- 
location technique. Numerical results for the thermocapillary migration velocity of the drop normalized 
by its value in an unbounded medium are presented for various values of the relative viscosity and ther- 
mal conductivity of the drop, the relative conductivity of the cavity phase, the drop-to-cavity radius ratio,
and the relative distance between the drop and cavity centers. In the particular case of the migration of a
spherical drop in a concentric cavity, these results agree excellently with the exact solution derived ana- 
lytically. The normalized thermocapil lary migration velocity of the confined drop decreases monotoni- 
cally with an increase in the drop-to-cavity radius ratio or its relative distance from the cavity center 
and vanishes in the touching limit of the drop and cavity surfaces. On the other hand, this velocity 
increases with an increase in the relative thermal conductivity of the cavity phase, but can increase or
decrease with an increase in the relative viscosity or thermal conductivity of the drop for a given config-
uration. The boundary effect on thermocapillary migration can be significant, but is weaker than that on
sedimen tation.

� 2013 Elsevier Ltd. All rights reserved.

1. Introductio n

A small drop of one fluid suspended in a second fluid in which 
there is a temperature gradient will move toward the hotter side 
due to the temperature-ind uced interfacial tension gradient along 
the drop surface. This phenomeno n, known as thermocapi llary 
migration, plays an important role in material processing under 
microgravity condition and many other technologic al applications 
[1]. The thermocapi llary migration of drops was first demonstrated 
by Young et al. [2], who observed the movement of gas bubbles in a
vertical liquid bridge in the gap between the anvils of a microme- 
ter. The lower anvil was heated to produce the temperature gradi- 
ent to arrest the buoyant rise of the bubbles or even to drive the 
bubbles downward. They also derived a formula for the migration 
velocity U0 of a spherical drop of radius a present in an unbounded 
fluid of viscosity g with an imposed uniform temperat ure gradient 
rT1 in the limit of small Marangoni and Reynolds numbers ,

U0 ¼
2

ð2þ k�Þð2þ 3g�Þ �
@c
@T

� �
a
g
rT1: ð1Þ

In this formula , k⁄ and g⁄ are the ratios of thermal conduct ivities 
and viscositi es, respective ly, betwee n the interna l and ambient 
fluids, @c/@T is the variation of the interfacia l tension c at the drop 
surface with respect to the local temperat ure T, and all the physical 
properti es are taken to be constant except for the interfacia l
tension , which is assumed to vary linearly with temperat ure. The 
thermo capillary mobility of a spheric al gas bubble (with negligib le
therma l conductivity and viscosity in comparison with the 
surrou nding liquid) can be evaluated by Eq. (1) taking the limiting 
values k⁄ = 0 and g⁄ = 0. According to Eq. (1), bubbles of radius 
10 lm in water will migrat e by thermocapi llarity at a velocity about 
0.7 mm/s in temperatur e gradients of order 1 K/mm.

Eq. (1) serves only for a fluid drop in continuo us phases that ex- 
tend to infinity in all directions. However, in practical applicati ons 
of thermocapillar y migration, drops usually are not isolated and 
will move in the presence of neighboring drops and/or boundari es
[3–18]. During the past three decades, much progress has been 
made in the theoretical analysis concerning the applicabi lity of
Eq. (1) for the thermocapi llary migration of a drop in a variety of
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bounded systems. Using spherical bipolar coordinates , Meyyappan 
et al. [19] and Sadhal [20] semi-analyt ically determined the quasi- 
steady thermocapi llary migration velocity of a spherical gas bubble 
perpendicul ar to an infinite plane surface of constant temperature ,
and Meyyappan and Subramanian [21] investiga ted the thermo- 
capillary motion of a gas bubble parallel to a plane wall prescribed 
with a linear temperature distribution . Later, Barton and Subrama- 
nian [22] and Chen and Keh [23] also used spherical bipolar 
coordinates to solve the problem of thermocapillar y migration of
a fluid drop normal to an isothermal plane surface. Analytical solu- 
tions of this problem in asymptotic forms were also obtained by
using a method of reflections [23] and a lubrication theory [24].
In the aforementione d thermocapi llary motions of a bubble or drop 
near a plane boundary, the migration velocity was found to
decrease monotonically as the drop approaches the boundary as
a result of the drop-boundary thermal and hydrodynamic 
interactions .

The thermocapi llary migration of a fluid sphere within narrow 
pores has also been examined. Using a boundary collocation 
method, Chen et al. [25] solved for the thermocapi llary mobility 
of a spherical drop along the axis of an insulated circular tube,
which is a monotonica lly decreasing function of the drop-to-t ube 
radius ratio and increases as k⁄ decrease s, because a greater por- 
tion of energy is conducted through the gap between the less 
conductive drop and the insulated tube wall creating larger inter- 
facial tension gradients at the drop surface. On the other hand,
the thermocap illary motions of a spherical drop parallel [26]

and perpendicular [27] to two plane walls at an arbitrary position 
between them have been investigated by using both the bound- 
ary collocation techniqu e and the method of reflections. The drop 
velocity parallel to one or two plane walls prescribed with a lin- 
ear temperature profile increases as k⁄ increases. Under the con- 
dition of large values of k⁄ and g⁄, the thermocapi llary mobility of
the drop can increase with a decrease in the drop-to-wall dis- 
tance and even be greater than its value in an unbound ed med- 
ium given by Eq. (1) when the gap between the drop and the 
wall becomes thin.

In addition to the investigations of boundary effects on the 
thermocapi llary migration of fluid spheres, the motions of a
deformab le drop near another drop [28], normal to an isothermal 
plane wall [29], and in a square box [30] due to thermocapi llarity 
have been studied. The boundary effects on the thermocapillar y
migration of fluid drops normal to a plane wall [31] and the 
interactio n in thermocapi llary motion of two drops with different 
diameters [32] have also been examine d experimentally and were 
found to be consistent with the theoretical predictio ns. In all of the 
previous studies of boundary effects on thermocapi llary migration 
of fluid drops, the effect of the thermal conductivity of the bound- 
ary phase has never been considered .

Microfluidic systems with mazes of microchannel s along which 
drops conveying solutes or materials undergo thermocapillar y
motion are coming into use to perform bio/physico- chemical 
analyses or to produce novel entities [33]. The system of a fluid
sphere moving inside a spherical cavity can be taken as an

Nomencla ture 

a radius of the drop, m
A1n, A2n coefficients in Eqs. (17) and (18) for the flow field,

m�n+3 s�1

A0n; A00n; A�n functions of position in Eqs. (17)–(20), mn�2, mn�2,
mn�3

b radius of the cavity, m
Bn coefficients in Eq. (18) for the flow field, mn+2 s�1

B0n; B00n; B�n functions of position in Eqs. (17)–(20), m�n�1, m�n�1,
m�n�2

C1n, C2n coefficients in Eqs. (17) and (18) for the flow field,
m�n+1 s�1

C0n; C00n; C�n functions of position in Eqs. (17)–(20), mn, mn, mn�1

d distance between the centers of the drop and cavity, m
Dn coefficients in Eq. (18) for the flow field, mn s�1

D0n; D00n; D�n functions of position in Eqs. (17)–(20), m�n+1, m�n+1,
m�n

ez unit vector in z direction
E1 =jrT1j, K m�1

F force acting on the drop, N
k thermal conductivity of the externa l fluid, W m�1 K�1

k̂ thermal conductivity of the drop, W m�1 K�1

kw thermal conductivity of the cavity phase, W m�1 K�1

k⁄ ¼ k̂=k
k�w =k/kw

M, N numbers of collocation points on the drop and cavity 
surfaces 

p dynami c pressure in the externa l fluid, Pa
p̂ dynami c pressure in the drop, Pa
Pm Legendre function of order m
r1 radial spherical coordinate based on the center of the 

drop, m
r2 radial spherical coordinate based on the center of the 

cavity, m
R1m, R2m coefficients in Eqs. (8) and (9) for the temperatur e field,

m�m+1

S1m, S2m coefficients in Eqs. (9) and (10) for the temperatur e
field, mm+2

T temperat ure field in the externa l fluid, K
T̂ temperat ure field in the drop, K
Tw temperat ure field in the cavity phase, K
T0 undisturbed temper ature at the center of the drop, K
T1 prescribed temperat ure field defined by Eq. (7), K
U velocity of the drop, m s�1

U0, U0 velocity of an isolated drop, m s�1

v velocity field in the external fluid, m s�1

v̂ velocity field in the drop, m s�1

vq, vz componen ts of v in cylindrical coordinates , m s�1

v̂q; v̂z componen ts of v̂ in cylindrical coordinat es, m s�1

z axial cylindric al coordinat e, m

Greek symbols 
c interfacial tension, kg s�2

dð1Þm ; dð2Þm functions of position defined by Eqs. (A1) and (A2),
mm�1, m�m�2

dð3Þm ; dð4Þm functions of position defined by Eqs. (A3) and (A4),
m�m�2, mm�1

g viscosity of the external fluid, kg m�1 s�1

ĝ viscosity of the drop, kg m�1 s�1

g⁄ ¼ ĝ=g
h1, / angular spherical coordinates based on the center of the 

drop 
h2, / angular spherical coordinates based on the center of the 

cavity 
k =a/b
q radial cylindric al coordinate, m
srh viscous shear stress in the external fluid, Pa
ŝrh viscous shear stress in the drop, Pa
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