
Technical Note 

From thermomass to entransy 

XueTao Cheng, XinGang Liang ⇑
Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China 

a r t i c l e i n f o

Article history:
Received 7 August 2012 
Received in revised form 1 December 2012 
Accepted 20 February 2013 
Available online 22 March 2013 

Keywords:
Entransy
Entransy balance equation 
Thermomass
Heat transfer 

a b s t r a c t

The concepts of entransy and thermomass have been developed for heat transfer analyses and 
optimi zations. Thermomass is the equivalent mass of heat based on the Einstein’s mass–energy relation.
The concept of entransy reflects the energy of thermomass. The entransy balance equations of heat 
conduction and heat convection, which are the basis of the heat transfer optimization principles, are 
derived from the energy equation of thermomass in this paper. The relationship between the entran sy
and the thermomass is discussed.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction 

Heat transfer analyses and optimizati on are important topics 
because of the worldwide energy demand [1,2]. There are several 
new theories on heat transfer analyses and optimizati ons [1–4],
such as the entransy theory [1] and the thermomas s theory [2–
4]. The entransy theory was applied to the optimizations of heat 
conduction [1,5–7], heat convection [1,8], thermal radiation [9],
and heat exchanger designs [10], and the thermomass theory 
was used to analyze heat transfer from the viewpoint of the 
Einstein’s mass–energy relation [2–4,11].

The concept of entransy was proposed by the analogy between 
heat conduction and electrical conduction, which correspond s to
the electrical potential energy in a capacitor [1]. Guo et al. [1]
and Cheng et al. [12] proved that the total entransy always de- 
creases during any practical heat transfer process. Therefore, the 
loss in entransy due to heat transport, called entransy dissipation,
is an irreversibility description of heat transfer [1,12]. With the 
concept of entransy dissipation, the entransy balance equation of
heat transfer was set up and the minimum entransy dissipation 
principle for prescribed heat flow boundary conditions and the 
maximum entransy dissipation principle for prescribed tempera- 
ture boundary conditions were derived [1]. These two principles 
are referred to as the extremum entransy dissipation principle 
and are further summarized into the minimum thermal resistance 
principle by defining the equivalent thermal resistance based on
the entransy dissipation. The minimum entransy-dissipat ion- 
based thermal resistance principle states that lower thermal 

resistance leads to better heat transfer. Some heat transfer 
processes were optimized with these principles [1,5–10].

On the other hand, the thermomas s theory [2–4] was proposed 
based on the Einstein’s mass–energy relation. The equivalent mass 
of phonon gas energy is calculated by the Einstein’s mass–energy
relation. The momentum conservation equation of the thermomas s
was established based on the Newtonian mechanics [2,3], which 
considers the inertial force of thermomass. The inertia of thermo- 
mass is only important at very lower temperat ure and very high 
heat flux. The momentum conservation equation reduces to the 
Fourier’s law when the inertial force can be ignored. Wang et al.
[4] analyzed the heat flow in carbon nanotubes based on the ther- 
momass theory and indicated that heat flow choking may happen 
in nanotube under very large heat flux.

The entransy and thermomas s theories are in the developing 
period and still need testing with time. There is plenty of room 
for their growth, for instance, the relationship between the 
entransy theory and the thermom ass theory. The basis for the 
applicabi lity of the entransy theory to heat transfer analyses and 
optimizati ons is the entransy balance equation [1,13]. There is no
derivation of the entransy balance equation from the viewpoint 
of thermomas s though Guo et al. [11] showed that the concept of
entransy reflects the thermal energy of thermomas s of the object.
It is worth of making further investigations on this topic.

2. Entransy balance equation and optimization principles for 
heat transfer 

If we do not consider the inner heat source and the viscous dis- 
sipation, the energy conservation for heat convectio n can be ex- 
pressed as
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þ q0cV ðu0 � rTÞ ¼ �r � q; ð1Þ

where q0 is the density of the fluid, cV is the specific heat capacity, T
is temperat ure, t is time, u0 is the fluid velocity, and q is the heat 
flux density. When the value of u0 is zero, Eq. (1) reduces to the en- 
ergy equation of heat conducti on.

The left of Eq. (1) is zero for steady heat transfer. Multiplying 
Eq. (1) with temperature and applying the Fourier law yield [1,13]

u0 � r
1
2
q0cV T2

� �
¼ �r � ðTqÞ � kðrTÞ2; ð2Þ

where k is the therma l conductivity . The left-hand side is the 
entransy increase per unit volume due to convection. On the 
right-ha nd side, the first term is the net entransy flux into per unit 
volume associated with heat flux, while the second term is the en- 
transy dissipatio n per unit volume. Eq. (2) is the entransy balance 
equation for heat conve ction. When u0 is zero, this equation reduces 
to the entransy balance equation for heat conduction.

The optimization principles of heat conduction and heat con- 
vection can be derived based on Eq. (2). For steady incompress ible 
heat convection, the entransy dissipatio n can be expresse d as
[13,14]
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� �
u0 � ndA; ð3Þ

where V is the volume, A is its surface, and n is the normal vector of
the surface . The second term on the right-ha nd side of Eq. (3) is zero 
for a closed system . In this case, we can define the heat transfer rate 
of the system as

Q c ¼ �
Z

Ain

qin � ndAin ¼
Z

Aout

qout � ndAout; ð4Þ

where qin is the heat flux into the system throug h boundar y area 
Ain, while qout is that out of the system throug h boundar y area Aout.
With Eq. (4), the equiva lent boundary temperat ure from which the 
system takes heat can be defined as

Tin ¼ �
Z

Ain

Tqin � ndAin

 !
=Q c; ð5Þ

while the equiva lent boundary temperat ure that releases heat out 
of the system is

Tout ¼
Z

A
Tqout � ndA=Q c: ð6Þ

Therefore, Eq. (3) becom es [13,14]

_Gdis ¼ Q cðT in � ToutÞ ¼ Q cDTc; ð7Þ

where DTc is the equiva lent heat transfer temperatur e difference for 
the closed system . The entran sy-dissipatio n-based therma l
resistanc e of the closed system can be defined as [13,14]

Rc ¼ _Gdis=Q 2
c ¼ DTc=Q c: ð8Þ

Eqs. (7) and (8) are also tenable for heat conduct ion.
The heat transfer rate for a steady open system can be defined

as

Qop ¼
Z

A
q0cV Tu0 � ndA

¼
Z

Af-out 

q0cV Tuout � ndAf-out þ
Z

Af-in 

q0cV Tuin � ndAf-in ; ð9Þ

where uin is the veloci ty of the inlet fluid and Af-in is the corresp ond- 
ing inlet area, while uout is the velocity of the outlet fluid and Af-out

is the corresp onding outlet area. The equivalent temperatu re of the 
boundar ies can be defined as

Tb ¼ �
Z

A
Tq � ndA

� ��
Qop; ð10Þ

while the equiva lent fluid temperat ure can be defined as

T f ¼
Z

A

1
2
q0cV T2

� �
u0 � ndA=Q op: ð11Þ

Then, Eq. (3) reduces to

_Gdis ¼ Q opðTb � T fÞ ¼ Q opDTop; ð12Þ

where DTop is the equivalent heat transfer temperat ure difference 
for the open system . Similar to Eq. (8), the thermal resistanc e of
the open system can be defined as

Rop ¼ _Gdis=Q 2
op ¼ DTop=Qop: ð13Þ

Eqs. (7) and (12) state that the maximum entransy dissipation 
rate corresponds to the maximum heat transfer rate for prescribed 
equivalent heat transfer temperature difference, while the mini- 
mum entransy dissipation rate corresponds to the minimum 
equivalent heat transfer temperature difference for prescribed heat 
transfer rate [1]. This is the extremum entransy dissipation princi- 
ple. It can be seen from Eqs. (8) and (13) that the extremum 
entransy dissipation corresponds to the minimum thermal resis- 
tance, which is called the minimum thermal resistance principle 
[1]. These principles have been used to analyze and optimize heat 
conduction and heat convection problems [1,5–10].

From the above discussion, it can be found that Eq. (2), the en- 
transy balance equation, is the basis of the optimization principles 
of heat transfer. Next section will display its derivation from the 
viewpoin t of the thermomass theory.

3. Derivation of entransy balance equation from the viewpoint 
of thermom ass 

3.1. Relations hip between the concepts of entransy and thermomass 

Thermom ass, the equivalent mass of heat in an object, which is
the relativistic mass, is defined according to the Einstein mass–en-
ergy relation [2–4]

mh ¼ EV=c2; ð14Þ

where EV is the internal energy, and c is the velocity of light 
(3 � 108 m/s). The internal energy is the kinetic energy of atoms’
random moveme nt. There should be a correspon ding relativistic 
mass that is attache d to the rest mass m0 as shown in Fig. 1. With 
this definition, heat transfer can be treated as the moveme nt of
thermo mass, which is described by the motio n equation in fluid
mecha nics [2–4].

When the medium’s temperat ure is much higher than the 
Debye temperature , its internal energy at constant volume can 
be expresse d as [15]

Fig. 1. Relationship between the rest mass and the equivalent mass of heat.
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