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a b s t r a c t

This paper presents a set of classical analytical solutions to heat conduction in a two-layer composite hol-
low cylindrical medium, which are derived by the method of Laplace transform. The subjected boundary
conditions are general and included various combinations of constant temperature, constant flux, zero
flux, or convection boundary condition at either surface. The new solution can reduce to Jaeger’s solution
to the problems subject to constant-temperature boundary conditions, verifying that our solution is an
extension version of his solution. Moreover, the solutions subject to a constant flux and a constant tem-
perature are used to evaluate short-time accuracy of a composite-medium line-source solution. Compar-
ison of these two solutions indicates that the temperature response is always delayed as a result of the
line-source assumption. An expression for estimating the minimum threshold, beyond which the line-
source solution is acceptable, is suggested for engineering applications.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Transient heat conduction in a composite medium is a classic
problem of heat conduction. Composite materials are media com-
posed of layers of media having different thicknesses and thermal
properties. Since these multilayer materials have added advanta-
ges of combined properties, such as higher ratio of strength to
weight, plasticity, low cost, etc., nowadays they are extensively
used in numerous science and engineering applications, for in-
stance, brake and friction systems, heat exchangers, electrical
applications, and biomaterials [1–4]. They do, however, cause addi-
tional complications in the thermal analysis [5–7].

Various mathematical methods are available for solving heat
conduction in a composite medium, including Laplace transform
method [5–7], orthogonal expansion technique [8–11], Green’s
function approach [12], line heat-source method [13–15], and
integral transform technique [16–18], etc. The Laplace transform
method may be the best for solving one-dimensional transient
problems. In their classical book [5], Carslaw and Jaeger summarized
many such solutions for composite media. For multi-dimensional
problems, the combined methods of Laplace transform and other
techniques such as integral transform and separation of variables
may be useful [5,19].

Recently, rapid advances of computers and software have
generated growing interest in solving more general problems in
multilayered materials, together with various complexities
[12,19–24], for example, involving the one-dimensional [20] or
two-dimensional n-layer materials [21], time-dependent boundary
conditions [23], and n-layer orthotropic laminates [24]. These
more general problems usually involve computation of higher-or-
der matrix determinants [19], recurring relations for determining
coefficients occurred in the eigenfunctions [20–23], and even
numerical schemes for the Laplace inversion theorem [24]. In fact,
these ‘‘analytical’’ solutions are only formal solutions, and they are
not fully exact or explicit solutions in the classical sense. Not sur-
prisingly, to the degree that these complications are involved,
these solutions are purely formal and their implementation relies
heavily on advanced commercial computational software.

In this paper, a set of classical explicit (not formal) analytical
solutions for a two-layer composite hollow cylindrical medium
with general inhomogeneous boundary conditions are derived.
The boundary conditions are very general, including various com-
binations of the first-, the second-and the third-kind boundary
conditions; it is shown that the analytical solution can reduce to
some reported specific solutions if proper values of the coefficients
in the general boundary conditions are specified. From a practical
perspective, the fully-explicit solution is a good choice for validat-
ing the formal or semi-analytical solutions for more complicated
problems. To the best of the authors’ knowledge, the derived solu-
tions here are new and contribute to the field of heat conduction.
Another objective of this paper is to verify short-time performance
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of a new developed line-source solution for composite cylindrical
media [14,15]. A simplified solution, subjected to a constant heat
flux and a constant temperature, can serve as this verification.

2. Problem statement and solution

The problem studied here is the heat conduction in a finite hol-
low composite cylinder (Fig. 1). The region r1 6 r < r2 is of one sub-
stance and region r2 6 r < r3 of another. Initial temperatures are
assumed to be zero for both regions; the governing equations are
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where a1, a2 denote thermal diffusivities of the media. The initial
conditions are

t ¼ 0; hi ¼ 0; i ¼ 1;2 ð2aÞ

The boundary conditions are
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Here, h1; h2;h
0
1;h

0
2 are constants which may be positive or zero pro-

vided both of h1 and h2, or h01 and h02 do not vanish; h3 and h03 are

time-independent constants. These boundary conditions include
all combinations of constant temperature, constant flux, zero flux,
or convection boundary condition at either surface.

For convenience, the following derivation uses functions sug-
gested by Jaeger [25]:
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Cðx; yÞ ¼ J0ðxÞY0ðyÞ � Y0ðxÞJ0ðyÞ ð5Þ
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Here, In and Kn denote the modified Bessel functions of order n, Jn

and Yn denote the Bessel functions of the first and the second kind
of order n, respectively. The functions defined by Eqs. (3)–(6) are
connected by the relations

Dðix; iyÞ ¼ �p
2

Cðx; yÞ ð7Þ

irþsDr;sðix; iyÞ ¼ �
p
2

Cr;sðx; yÞ ð8Þ

In this paper i is used for i2 = �1.
The heat conduction problem defined by Eq. (1) and (2) can be

solved by the Laplace transform method, and the key steps of this
solution procedure are listed in the Appendix A; the final result is
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Appendix A by Eq. (A.26); and an are the roots of Eq. (11):
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In Eqs. (9)–(11), the following definitions of variables are used:
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Fig. 1. Schematic layout of a finite hollow composite cylindrical medium.
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