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a b s t r a c t

Mathematical simulation of unsteady natural convection in an inclined cylinder with heat-conducting
walls of finite thickness and a local heat source in conditions of convective heat exchange with an envi-
ronment has been carried out. Numerical analysis has been based on solution of the convection equations
in the dimensionless variables vector potential components, modified vorticity functions, temperature.
Particular efforts have been focused on the effects of four types of influential factors such as the Rayleigh
number Ra = 104, 5 � 104, 105, the Prandtl number Pr = 0.7, 7.0, the thermal conductivity ratio
k2;1 ¼ 5:7 � 10�4; 4:3 � 10�2 and the inclination angle c = 0, p/6, p/3, p/2 on the velocity and temperature
fields. The effect scales of the key parameters on the average Nusselt number have been determined.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Study of natural convection is related to definition of optimum
heat transfer modes in various technological systems such as heat
pipes [1,2], thermosyphons [3,4], cooling systems of heat-generat-
ing components in electronics [5,6], chemical reactors [7]. Correct
definition of the most effective conditions of the transport pro-
cesses evolution in such devices is possible only by multiparameter
mathematical simulation of nonstationary convective heat transfer
modes [8]. To date, a bundle of experimental and theoretical stud-
ies of natural convection regimes in cavities with various shapes
[9–26] has been conducted. The majority of the investigations con-
cern the numerical analysis of transport processes in the two-
dimensional objects both in view of heat-conducting walls effect
[11–15], and in case of absence of such influence [16–19]. Thus it
is necessary to note essential differences of the obtained results
[12,13,15], that is caused by significant thermal lag effect of solid
walls. For example, Liaqat and Baytas [13] have numerically ana-
lyzed natural convection in an enclosure having both heat-con-
ducting walls of finite thickness and without them. The obtained
results reflect strong effect of heat-conducting walls of finite thick-
ness on heat transfer regimes. Sheremet [15] has analyzed the dif-
fusion effects in the conjugate heat and mass transfer problems in

a wide range of key parameters. It was shown that essential
changes of thermohydrodynamic regimes in a cavity and also a sig-
nificant decrease in the average Nusselt and Sherwood numbers is
observed in case of infinitely thin walls.

The effect of heat-conducting walls on the velocity and temper-
ature fields has been pointed out for the three-dimensional natural
convection regimes in rectangular domains [21–23]. Kuznetsov
and Sheremet [21] have shown that for the conjugate Rayleigh–Be-
nard problem a decrease in the thermal conductivity ratio leads
both to an increase in temperature in a cavity and to a reduction
in the average Nusselt number. Valencia et al. [22] have conducted
the experimental and numerical analysis of natural convection in a
cubical enclosure with and without heat-conducting walls of finite
thickness at 107

6 Ra 6 108. It has been shown, that in case of the
conjugate problem the change in circulation rates and temperature
of a fluid in the cavity is observed. Ha and Jung [23] have numer-
ically investigated the effect of the heat-generating cubic conduct-
ing body on the flow structure in a vertical cubic enclosure. These
authors demonstrated that the presence of the heat-conducting
body leads to a significant change in the average Nusselt number.

The effect of heat-conducting walls on the velocity and temper-
ature fields has been unfairly neglected at the analysis of three-
dimensional convective heat transfer in cylindrical enclosures
[24–26]. Li et al. [24] have numerically analyzed unsteady three-
dimensional thermo-hydrodynamic structures in a vertical closed
cylinder heated from the side and cooled from above. These
authors showed that an increase in temperature difference leads
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to the formation of unstable heat transfer modes. Specifically, at
Ra = 2000 the resulting flow is steady but asymmetric. As Ra
reaches 3000 the flow already becomes time periodic and oscillates
in a large amplitude. Leong [25] in variables such as the vector po-
tential components and the vorticity vector has numerically solved
the three-dimensional Rayleigh–Benard convection equations for a
vertical cylinder with infinitely thin walls. He has shown three
hydrodynamic patterns in the cylinder depending on the Rayleigh

number. Cheng et al. [26] investigated influence of the thermal
boundary conditions on the three-dimensional convective flow in
a vertical cylinder heated from below. These authors revealed that
in case of the adiabatic side surface the flow is highly asymmetric
and contains multicellular vortices even at symmetric mathemati-
cal statement of the problem.

Nomenclature

Bi = hLr/k1 Biot number

Fo ¼ a1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbðThs � T0ÞL3

r

q
Fourier number

g acceleration of gravity
h heat transfer factor
k1 thermal conductivity of solid walls
k2 fluid thermal conductivity
ki,j = ki/kj thermal conductivity ratio
lw solid wall thickness
Lr cylinder radius
p pressure
Pr = m/a2 Prandtl number
r radial cylindrical coordinate
R dimensionless radial cylindrical coordinate
Ra ¼ gbðThs � T0ÞL3

r =ma2 Rayleigh number
t time
T temperature
T0 initial temperature
Ths heat source temperature
Vr velocity along the r-axis
Vu velocity along the u-axis
Vz velocity along the z-axis
U dimensionless velocity along the r-axis
V dimensionless velocity along the u-axis
Vb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbðThs � T0ÞLr

p
buoyancy velocity

W dimensionless velocity along the z-axis
z vertical cylindrical coordinate
zhs heat source thickness
Z dimensionless vertical cylindrical coordinate
r2 ¼ 1

r
@
@r r @
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r2
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@z2 Laplacian

~r2 ¼ 1
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R2
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@u2 þ @2

@Z2 dimensionless Laplacian

Greek symbols
a1 thermal diffusivity of solid walls
a2 fluid thermal diffusivity
ai,j = ai/aj thermal diffusivity ratio
b coefficient of volumetric thermal expansion
c inclination angle
Ds computational time step
Dr computational step along radial cylindrical coordinate
Du computational step along azimuthal cylindrical coordi-

nate
Dz computational step along vertical cylindrical coordinate
H dimensionless temperature
He environmental dimensionless temperature
m kinematic viscosity
q2 fluid density
s dimensionless time
u azimuthal cylindrical coordinate
wr, wu, wz vector potential components
Wr, Wu, Wz dimensionless vector potential components
xr, xu, xz modified vorticity functions
Xr, Xu, Xz dimensionless modified vorticity functions

Subscripts
i, j numbers of the solution domain elements (Fig. 1)
avg average
e environment
hs heat source

Fig. 1. A scheme of the system: (1) walls; (2) fluid; and (3) heat source.
Fig. 2. Variation of the average Nusselt number versus the dimensionless time and
the mesh parameters at Ra = 104, Pr = 0.7, k2,1 = 5.7 � 10�4, c = p/6.
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