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a b s t r a c t

A mathematical model describing the steady-state solidification of ternary systems with mushy layers
(primary and cotectic) is formulated: solidification along a liquidus surface is characterized by a primary
mushy layer, and solidification along a cotectic line is characterized by a secondary (cotectic) mushy
layer. Exact analytical solutions of the model under consideration are found in a parametric form (thick-
nesses of mushy layers, growth rate of their boundaries, temperature and composition fields, solid frac-
tions are determined in an explicit form). The velocity of solidification is completely determined by
temperature gradients in the solid and liquid phases. This velocity coincides with similar expressions
describing binary melt solidification with a planar front or a mushy layer. It is shown that the liquid com-
position of the main component decreases in the cotectic and primary layers, whereas the second (cotec-
tic) composition increases in the cotectic layer, attains a maximum point and decreases in the primary
layer.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The constitutional supercooling arising under certain circum-
stances ahead of the planar phase transition interface [1] and its
morphological instability [2–4] cause a system of elements of the
solid phase in the form of dendrites, columnar and uniaxial crystals
to appear in the supercooled melt [5–7]. The development of this
system reduces the supercooling and leads to formation of a new
stable solidification mode characterized by the presence of a
mushy (two-phase) layer that separates the solid phase and the
melt. The study of relationships governing solidification in the
presence of a mushy region is rather complicated. This happens be-
cause it is necessary to investigate the interaction of nonlinear heat
and mass transfer in the case of moving phase transition bound-
aries. For binary alloys, an exact analytical description of the stea-
dy-state solidification scenario with a mushy layer has been given
for the first time in Refs. [8–10] by means of a new approach. This
method of integration of the nonlinear heat and mass transfer
equations connected with the transition to a new variable–solid
fraction in the mushy layer will be developed in the present study
for ternary systems. Hereafter, the theory of Refs. [8–10] has been
further refined in order to take into account thermodiffusion and
temperature-dependent diffusivity effects [11,12] as well as the
influence of weak convection [13] and nonlinear liquidus equation

[14]. Also note that approximate analytical approaches have been
developed for the description of the self-similar [15,16] and un-
steady-state [17,18] solidification regimes of binary systems.

It is well-known that a wide variety of processes met in geo-
physics and metallurgy involve the solidification of multicompo-
nent melts (e.g., solidification of magmas [19], casting of metals
[20] and crystal growth processes [21]). Directional and bulk solid-
ification of different components of the system leads to variations
in both the composition and temperature gradients near the phase
transition interface. As in the case of binary melts, this gives rise to
the formation of one (in the case of a binary melt) or more (in the
case of a multicomponent melt) mushy layers between the pure
solid and liquid phases [22]. Let us emphasize that as the number
of components in a system increases, the range of possible behav-
iors increases as well [23] (e.g., compare dynamics of concentration
profiles in binary and ternary melts [4,24]). The complexity of non-
linear interactions between the heat and mass transfer processes in
mushy layers increases with the number of components of a mul-
ticomponent melt. Hence, a ternary melt or solution of three chem-
ically distinct components represents a test system showing the
main features of a multicomponent solidification in comparison
with a binary system.

A recent investigation of the crystallization of a three-
component solution begun in Ref. [25]. In that study, a three-com-
ponent system was cooled from below and all convection was
suppressed due to the fact that the buoyancy of the fluid released
on solidification always increased (a possible influence of convec-
tion on solidification of ternary systems has been discussed in
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Ref. [26]). A mathematical model for non-convecting diffusion-
controlled solidification of a ternary solution cooled from below
has been described and discussed in Ref. [27]. This model contains
the heat and mass transfer equations in solid, liquid phases and
two mushy layers (primary and cotectic), where all transfer coeffi-
cients are dependent on the liquid fraction. These four regions (so-
lid, cotectic, primary and liquid) are connected by the
corresponding boundary conditions imposed at three moving
boundaries. Because an analytical technique for the solution of this
highly nonlinear problem of unsteady-state solidification with two
mushy layers does not exist, analytical solutions have been ob-
tained for the case of zero solute diffusion and zero latent heat
[27]. More general solutions of the model developed in [27] have
been constructed for the self-similar solidification scenario on
the basis of Scheil equations for the impurity distribution in mushy
layers (this theory is developed in Refs. [28,29] and [30] for the lin-
ear and nonlinear liquidus and cotectic equations).

The present study is devoted to the theory of the steady-state
solidification of a ternary system on the basis of model equations
obtained in Ref. [27]. The steady-state growth, in which the inter-
faces are supposed to advance at a prescribed constant velocity,
corresponds to many processes met in metallurgy and geophysics
(e.g. the crystal pulling (Czochralski growth) and the freezing of a
thick sea ice). Below we discuss how to integrate highly nonlinear
heat and mass transfer problem in the presence of three moving
boundaries of the phase transition when crystallization occurs
with a constant velocity. The outline of this paper is as follows:
Section 2 represents a theoretical description of the steady-state
solidification scenario; exact analytical solutions are given in Sec-
tion 3; results are reported and discussed in Section 4.

2. The steady-state solidification model of a ternary system

Let us consider a unidirectional solidification process of a ter-
nary system in thermodynamic equilibrium illustrated in Fig. 1. A
sketch of the ternary phase diagram under consideration in the
spirit of Ref. [27] is shown in Fig. 2. We denote the liquid compo-
sitions of components A, B and C by A, B and C (A + B + C = 1). Each
of the three sides of the phase diagram describes the binary phase
diagram (the binary eutectic point EAB has temperature TAB

E and
composition BAB

E of the B component). Three liquidus surfaces are
formed by the binary liquidus curves along each of the three sides
of the ternary phase diagram and cotectic curves extend from the
binary eutectic points into the interior of the diagram (these curves
are the boundaries of the liquidus surfaces). The ternary eutectic
point E is located at the intersection of these curves, where the
temperature is TE and the compositions are AE, BE and CE. Let a li-
quid-phase ternary alloy be at the point P on a liquidus surface.
After cooling, component A begins to solidify out, and the compo-
nents B and C are rejected into the liquid. The latter leads the sys-
tem to point S on the cotectic curve. At this time, the system has a
single phase transition region of the A component–primary mushy
layer. When the cotectic curve is reached (point S), solidification
continues and two components A and B undergo transformations
in the solid state. At this time, the system goes from point S to
point E along the cotectic curve. Here we have two phase transition
regions–primary and cotectic mushy layers. Thus, the curves P–S–E
and S–E respectively correspond to the primary and primary–
cotectic mushy layer solidification scenarios. Once the eutectic
point E is reached, the remaining liquid solidifies to form a eutectic
solid layer composed of solid A, B and C.

Nomenclature

B and C liquid compositions of components B and C
BE and CE liquid compositions of components B and C in the ter-

nary eutectic point
BC and CC cotectic compositions of components B and C
B1 and C1 initial values of B and C in the liquid phase far from

the primary mushy layer
DB and DC solute diffusivities of components B and C
GL temperature gradient in the liquid phase
GS temperature gradient in the solid phase
hC cotectic mushy layer–primary mushy layer boundary
hE solid phase–cotectic mushy layer boundary
hP primary mushy layer–liquid-phase boundary
kL thermal conductivity in the liquid
kS thermal conductivity in the solid
�k ¼ kLvþ kSð1� vÞ thermal conductivity in a mushy layer
LV latent heat of solidification
mB and mC liquidus slopes corresponding to components B and C
mC

B and mC
C cotectic slopes corresponding to components B and C

t time
T temperature
TL liquidus temperature
TE temperature in the ternary eutectic point
TAB

E temperature in the binary eutectic point
TM phase transition temperature of pure component A
V solidification velocity
x and z spatial coordinates

Greek symbols
d = dC+dP thickness of the phase transition layer
dC thickness of the cotectic mushy layer

dP thickness of the primary mushy layer
j temperature diffusivity coefficient
uA, uB and uC solid fractions of components A, B and C
uþACP solid fraction uA on the right side of the cotectic

layer–primary layer interface
u�ACP solid fraction uA on the left side of the cotectic

layer–primary layer interface
u�APL solid fraction uA on the left side of the primary

layer–liquid interface
uþASC solid fraction uA on the right side of the solid

phase–cotectic layer interface
uþBSC solid fraction uB on the right side of the solid

phase–cotectic layer interface
u�BCP solid fraction uB on the left side of the cotectic

layer–primary layer interface
uþBSC solid fraction uB on the right side of the solid

phase–cotectic layer interface
u�BSC solid fraction uB on the left side of the solid phase–

cotectic layer interface
uþCSC solid fraction uC on the right side of the solid

phase–cotectic layer interface
u�CSC solid fraction uC on the left side of the solid

phase–cotectic layer interface
v liquid fraction
v�CP liquid fraction on the left side of the cotectic

layer–primary layer interface
vþSC liquid fraction on the right side of the solid

phase–cotectic layer interface
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