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a b s t r a c t

The Marangoni flows in a shallow cavity subject to uniform heat fluxes on all sides are investigated. A
power law model is used to characterize the non-Newtonian fluid behavior of the fluid. The system with
an underformable free upper surface is assumed to be under a zero gravity environment. The governing
parameters for the problem are the thermal Marangoni number Ma, power-law index n, Prandtl number
Pr and cavity aspect ratio aspect ratio A. An analytical solution, valid for an infinite layer (A� 1), is
derived on the basis of the parallel flow approximation. For the case of a layer heated from the bottom
it is demonstrated that, for shear-thinning fluids (n < 1), the onset of convection is subcritical. For shear
thickening fluids (n > 1), convection is found to occur at a supercritical Rayleigh equal to zero. For the case
of a layer heated from all sides it is shown that multiple steady state solutions are possible, some of which
are unstable. The effects of the non-Newtonian behavior on the fluid flow, temperature field and heat
transfer are discussed. A good agreement is found between the analytical predictions and the numerical
results obtained by solving the full governing equations.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The study of surface tension-driven convection in a layer of fluid
is of importance in various areas in engineering and technology.
Applications include small-scale hydrodynamics [1] and low grav-
ity hydrodynamics [2,3]. Examples include for instance the growth
of crystal and processing materials. The quality of these latter is
considerably affected by the strength of the convective motions
such that it is of importance to understand and control Marangoni
induced convection.

The first study concerning thermocapillary flows in a pure fluid
layer, heated from below by a constant temperature or a constant
heat flux, is due to Pearson [4]. Based on the linear stability theory
this author reported the critical Marangoni number for a layer with
non-deformable top surface. Nield [5] also relied on the linear sta-
bility theory to investigate the combined effects of surface tension
and buoyancy. Extension of Nield’s work has been conducted by
numerous workers (see for instance Scanlon and Segel [6], Davis
[7] and Cloot and Lebon [8]). The role of the deformation of the free
surface on the onset of convection has also been investigated by
Scriven and Sternling [9], Davis and Homsy [10] and Takashima
[11]. It is demonstrated that the existence of the deformable inter-

face can lead to stabilization relative to the case of a planar inter-
face. Hashim and Wilson [12] used a combination of analytical and
numerical techniques to predict both steady and overstable con-
vection. Their results, based on the linear stability theory, were ob-
tained for the particular case when the Rayleigh and Marangoni
numbers are linearly dependent. The importance of temperature-
variable viscosity on the onset of stationary Marangoni convection
has been discussed by Awang Kechil and Hashim [13]. It is found
that the stability thresholds are critically dependent on large vis-
cosity variations. Three dimensional effects have been investigated
by Dauby and Lebon [14] and Bergeron et al. [15]. The critical
Marangoni number and the convective pattern at the threshold
are obtained as a function of the aspect ratio. A few studies have
also been conducted in the case of binary mixture for which sur-
face tension depends on both temperature and concentration
(see for instance Bahloul et al. [16]). It was demonstrated that,
for this situation, the onset of motion can be subcritical. Crystal
growth in microgravity environment was studied experimentally
by Croll et al. [17]. It was observed that if the intensity of the
flow exceeds a certain level it can become oscillatory and three-
dimensional. Kawamura et al. [18] reported a series of micrograv-
ity experiments on the Marangoni convection in liquid bridges. The
results include the critical temperature differences for the onset of
oscillatory flows. The state of the art, on Marangoni convection in
microgravity condition, has been summarized in a recent book by
Lappa [19].
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All the above studies are concerned with the case of Marangoni
driven convection in a Newtonian fluid layer. However, in many
practical applications, the fluid is characterized by a complex rhe-
ological behavior such that a Newtonian assumption is inappropri-
ate in practice. Examples include petroleum drilling, chemical
reactor design, polymer engineering, geophysical systems, certain
separation processes, etc. A few investigations have been under-
taken in the past, on natural convection in porous media saturated
by non-Newtonian fluids (see for instance Jaluria [20]). However,
studies focusing on natural convection in a cavity filled with a
non-Newtonian fluid are only a few. Most of the available papers
on this topic are concerned with natural convection of a non-
Newtonian fluid confined in a cavity differentially heated from
the vertical walls. A recent review of the literature for this flow
configuration is given by Turan et al. [21,22]. The onset of motion,
in a non-Newtonian fluid layer heated from below, was first con-
sidered analytically and experimentally by Tien et al. [23] and
numerically by Ozoe and Churchill [24]. More recently, a compre-
hensive review of the literature concerning the Rayleigh-Bénard
instability of a non-Newtonian fluid between heated parallel plates
is given by Zhang et al. [25]. Buoyant Marangoni convection, in
power-law fluid layers subjected to a horizontal constant temper-
ature gradient, has been investigated by Naimi et al [26,27]. The ef-
fect of non-Newtonian fluid behavior on the flow pattern,
temperature field and heat transfer is discussed. In a subsequent
paper these authors [28] investigated analytically and numerically
Marangoni convection of a power-law fluid in a zero gravity envi-
ronment. The effect of Marangoni convection on the flow and heat
transfer within a power-law liquid film over a stretching surface
has been considered by Chen [29]. It was reported that the velocity
and temperature distributions in the film are considerably affected
the Marangoni effects. More recently, Zhang et al. [30] considered
the problem of thermal Marangoni convection flow of power-law
fluid with linear temperature distribution. The effects of power-
law index and Marangoni number on velocity and temperature
profiles are examined.

The present study focuses on Marangoni induced convection in
a shallow cavity, under a zero gravity environment, filled with a
non-Newtonian binary fluid. The four faces of the enclosure are ex-
posed to uniform heat fluxes. The power-law model is adopted to

characterize the non-Newtonian fluid behavior. In particular, one
of the objectives of this paper is to predict the effect of the
power-law index n on the onset of Marangoni motion when the
layer is heated from the bottom. The paper is organized as follows.
In the next sections, the formulation of the problem is presented.
The numerical method used to solve the problem is discussed.
Then, the parallel flow theory is used to predict the critical
Marangoni number for the onset of motion from the rest state.
Also, the existence of multiple solutions when the system is sub-
ject to cross fluxes is investigated. The last section contains some
concluding remarks. The analytical and numerical results pre-
sented here are relevant to a better understanding of natural con-
vection in shallow cavity filled with a non-Newtonian fluid.

2. Mathematical formulation of the problem

The physical system consists in a shallow cavity filled with a
non-Newtonian fluid of power-law behavior. The enclosure is of
height H

0
and width L

0
. The origin of the coordinate system is lo-

cated at the center of the bottom wall of the cavity. Neumann
boundary conditions are applied for temperature on the four faces
of the system (see Eqs. 7, 8, 9a). The upper surface of the layer is
free while the other boundaries are hydrodynamically imperme-
able. The upper free surface is assumed to be flat and subject to
a surface tension r, which varies with temperature T

0
as

r ¼ r0½1� cðT 0 � T 00Þ�; where c is the thermal surface tension gra-
dient. The system is assumed to be under a zero gravity
environment.

The dimensionless governing equations describing conservation
of momentum and energy are given as:

DX
Dt
¼ Pr lar2Xþ 2

@la

@x
@X
@x
þ @la

@y
@X
@y

� �� �
þ SX ð1Þ

DT
Dt
¼ r2T ð2Þ

where the vorticity X, in term of stream function W, is defined as:

r2W ¼ �X ð3Þ

Nomenclature

A aspect ratio of the enclosure, A = L
0
/H

0

a constant
b constant
C dimensionless temperature gradient in x-direction
g gravitational acceleration, m/s2

H
0

height of enclosure, m
k thermal conductivity, W/(m K)
K consistency index for a power-law fluid, Pa sn

L
0

width of the enclosure, m
Ma Marangoni number, (�or/oT

0
)DT

0
H
02n+1/Kan

Masub
C subcritical Marangoni number

Masup
C supercritical Marangoni number

n power-law index
Nu Nusselt number, Eq. (11)
Pr Prandtl number, (K/qa)(a/H

02)n�1

q
0

constant heat flux per unit area, W/m2

T dimensionless temperature
DT

0
characteristic temperature difference, q

0
H
0
/k

u dimensionless velocity x-component
v dimensionless velocity y-component

x, y cartesian coordinates measured from the center of the
bottom wall of the cavity

Greek Symbols
a fluid thermal diffusivity, m2/s
c thermal surface tension gradient, K�1

W dimensionless stream function, W
0
/a

q density of fluid, kg/m3

r fluid surface tension coefficient, N/m
X dimensionless vorticity, X

0
/(a/H

02)
la dimensionless apparent viscosity, la ¼ l0a=ða=H02Þn�1

Superscript
’ dimensional quantities

Subscript
o refers to the value taken at the centre of the cavity
c refers to critical conditions
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