### Chemical Engineering Journal 280 (2015) 132-137

Contents lists available at ScienceDirect

# **Chemical Engineering Journal**

journal homepage: www.elsevier.com/locate/cej

# Facile synthesis of macroporous $Li_4SiO_4$ with remarkably enhanced $CO_2$ adsorption kinetics



<sup>a</sup> Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea <sup>b</sup> Department of Industrial Materials Research, Korea Institute of Geoscience and Mineral Resources, Daejeon 305-350, Republic of Korea

# HIGHLIGHTS

• We synthesized macroporous Li<sub>4</sub>SiO<sub>4</sub> by solid-state method using LiOH and fumed silica.

- The use of LiOH decreased the synthesis temperature of Li<sub>4</sub>SiO<sub>4</sub> down to 600 °C.
- The decrease of synthesis temperature circumvents undesirable sintering of Li<sub>4</sub>SiO<sub>4</sub>.
- Macroporous Li<sub>4</sub>SiO<sub>4</sub> exhibited enhanced CO<sub>2</sub> adsorption capacity and adsorption rate.
- During 10 cycles, the adsorption performance of macroporous Li<sub>4</sub>SiO<sub>4</sub> were maintained.

#### ARTICLE INFO

Article history: Received 25 March 2015 Received in revised form 21 May 2015 Accepted 22 May 2015 Available online 5 June 2015

Keywords: Lithium orthosilicate Macroporous Carbon dioxide Adsorption

# ABSTRACT

Lithium orthosilicate ( $Li_4SiO_4$ ) has attracted extensive scientific attention due to its large  $CO_2$  adsorption capacity at high temperature (650-700 °C) and low material cost. However, the conventional nonporous Li<sub>4</sub>SiO<sub>4</sub> ceramic shows very poor CO<sub>2</sub> adsorption performance below 600 °C, which is a relevant condition for possible applications such as sorption-enhanced steam methane reforming. In the present work, in order to increase the CO<sub>2</sub> adsorption kinetics below 600 °C, Li<sub>4</sub>SiO<sub>4</sub> was synthesized in the form of a macroporous structure by a simple solid-state transformation method using LiOH and fumed silica as a precursor for Li and SiO<sub>2</sub>, respectively. The use of LiOH substantially decreased the synthesis temperature of Li<sub>4</sub>SiO<sub>4</sub> down to 600 °C, compared with the conventional syntheses using other lithium precursors such as Li<sub>2</sub>CO<sub>3</sub> and LiNO<sub>3</sub> that require very high synthesis temperature (>700 °C). The decrease of the material synthesis temperature circumvents undesirable sintering of initially formed small Li4SiO4 crystallites and leads to the formation of a highly macroporous (macropore volume >0.6 mL  $g^{-1}$ ) Li<sub>4</sub>SiO<sub>4</sub> framework that has a significantly higher BET surface area ( $15 \text{ m}^2 \text{ g}^{-1}$ ) than conventional nonporous Li<sub>4</sub>SiO<sub>4</sub> (<1.0 m<sup>2</sup> g<sup>-1</sup>). The macroporous Li<sub>4</sub>SiO<sub>4</sub> exhibited dramatically enhanced CO<sub>2</sub> adsorption capacity (29.8 wt%) and rate (56.1 mg  $g^{-1}$  min<sup>-1</sup>), compared with the CO<sub>2</sub> adsorption capacities (1.40–7.79 wt%) and rates  $(0.420-2.95 \text{ mg g}^{-1} \text{ min}^{-1})$  of nonporous Li<sub>4</sub>SiO<sub>4</sub> materials. Adsorption-desorption cycles at 550 °C could be repeated 10 times without a significant decrease in the adsorption capacity or the rate capability.

© 2015 Elsevier B.V. All rights reserved.

# 1. Introduction

Developing adsorbents for carbon dioxide  $(CO_2)$  capture at high temperature (450–700 °C) has recently drawn significant interest [1]. The flue gas from the coal-burner is hot and its temperatures vary from a few hundred to about a thousand degrees Celsius depending on the specific locations in the flue gas line in the power

plant [2]. Direct capture of  $CO_2$  at high temperature can improve the energy efficiency by overcoming the need to cool the gas to ambient temperature prior to  $CO_2$  removal [3]. Another important application of high-temperature  $CO_2$  adsorbent is sorption -enhanced steam methane reforming (SE-SMR) for hydrogen production [4,5]. The process utilizes a solid  $CO_2$  adsorbent to capture  $CO_2$  produced in the reforming reactor and thereby overcomes the thermodynamic limitations of the reaction via Le Chatelier's principle. SE-SMR consequently can be operated at lower temperatures (450–600 °C), which are significantly lower than those required for the traditional steam methane reforming process (750–900 °C)

Chemical Engineering Journal





<sup>\*</sup> Corresponding author. Tel.: +82 42 350 3938.

E-mail address: mkchoi@kaist.ac.kr (M. Choi).

<sup>&</sup>lt;sup>1</sup> Co-corresponding author.

[5,6]. This can reduce energy consumption, coking, and sintering of the catalyst, and enables the use of less expensive reactor wall materials. The main requirements for designing an adsorbent for SE-SMR [7] are (1) a high CO<sub>2</sub> adsorption rate in a temperature range of 450–600 °C; (2) stable performance during repeated regeneration cycles; (3) low cost; and (4) high adsorption capacity.

Adsorbents based on calcium oxide (CaO) have been widely investigated as high-temperature  $CO_2$  adsorbents [4,6–9]. These materials are highly available, inexpensive, and show high CO<sub>2</sub> adsorption capacities. However, they require excessively high temperature for the desorption of CO<sub>2</sub> (>800 °C) [7,10]. Such high regeneration temperature causes sintering of the CaO adsorbents, thereby reducing the cyclic performance [7,9], and also requires the use of costly metallurgy for the reactor design. Recently, lithium-based ceramics such as Li<sub>2</sub>ZrO<sub>3</sub> [2,3,11], LiFeO<sub>2</sub> [12], Li<sub>2</sub>TiO<sub>3</sub> [13], Li<sub>5</sub>AlO<sub>4</sub> [14], and Li<sub>4</sub>SiO<sub>4</sub> [15–21] have been extensively studied as high-temperature CO<sub>2</sub> adsorbents, because desorption of CO<sub>2</sub> can be carried out at much lower temperature than with CaO-based materials. Among various lithium ceramics, lithium orthosilicate (Li<sub>4</sub>SiO<sub>4</sub>) is considered one of the most promising materials due to its large adsorption capacity and low material cost [11,15–19]. Li<sub>4</sub>SiO<sub>4</sub> can chemisorb CO<sub>2</sub> according to the reaction scheme shown in Scheme 1, which allows a theoretical maximum CO<sub>2</sub> capacity of 36.7 wt%.

Although conventional Li<sub>4</sub>SiO<sub>4</sub> exhibits reasonably fast CO<sub>2</sub> adsorption kinetics above 650 °C, it shows very slow CO<sub>2</sub> adsorption kinetics below 600 °C, thus presenting a significant hurdle for directly using it in applications such as SE-SMR [6,22]. At mild temperatures (<600 °C), the CO<sub>2</sub> adsorption process is limited to the Li<sub>4</sub>SiO<sub>4</sub> surface and only a superficial reaction occurs, leading to the formation of lithium carbonate (Li<sub>2</sub>CO<sub>3</sub>) and lithium metasilicate (Li<sub>2</sub>SiO<sub>3</sub>) external shell. Under these conditions, the bulk framework of Li<sub>4</sub>SiO<sub>4</sub> does not effectively participate in the CO<sub>2</sub> adsorption due to very slow interstitial Li<sup>+</sup> diffusion within the material framework [19,22]. One possible strategy to enhance the low-temperature CO<sub>2</sub> adsorption kinetics is to dope the Li<sub>4</sub>SiO<sub>4</sub> with heteroatoms such as Al [23,24], Fe [24], K [15,22], and Na [16]. Alternatively, in principle, structuring  $Li_4SiO_4$  into a highly porous structure can also significantly increase the CO<sub>2</sub> adsorption kinetics by shortening the diffusion path length (thinner framework) for Li<sup>+</sup> diffusion. Unfortunately, Li<sub>4</sub>SiO<sub>4</sub> has been mostly obtained as a nonporous structure with extremely low surface area  $(<5 \text{ m}^2 \text{ g}^{-1})$  [18,23,25]. Li<sub>4</sub>SiO<sub>4</sub> adsorbents commonly have been synthesized by the reaction between various silica (quartz, silica gel, Ludox, fumed silica, and diatomite) and Li precursors (Li<sub>2</sub>CO<sub>3</sub>, LiNO<sub>3</sub>, and LiOH) under dry or wet conditions, followed by heat treatment [15-25]. Previous studies [15-19,22,25] frequently have used Li<sub>2</sub>CO<sub>3</sub> as a Li precursor, which requires a synthesis temperature above 720 °C to obtain a pure Li<sub>4</sub>SiO<sub>4</sub> phase [21]. Syntheses using other Li precursors such as LiNO<sub>3</sub> and LiOH were also carried out at similarly high temperature without careful optimization of the synthesis conditions [23,25,26]. Because the Li<sub>4</sub>SiO<sub>4</sub> phase is synthesized at very high temperature, significant sintering of the Li<sub>4</sub>SiO<sub>4</sub> framework takes place concurrently with the phase formation, which leads to the formation of nonporous and low-surface-area Li<sub>4</sub>SiO<sub>4</sub>. Several researchers have reported the methods for obtaining a pure Li<sub>4</sub>SiO<sub>4</sub> phase with relatively smaller crystallite sizes [27,28], which used the additives such as citric acid  $(C_6H_8O_7)$  [27] and polyvinyl alcohol (PVA) [28].

In the present work, macroporous Li<sub>4</sub>SiO<sub>4</sub> was synthesized by a simple solid-state transformation method using LiOH and fumed silica as a precursor for Li and SiO<sub>2</sub>, respectively. These inorganic precursors were chosen because LiOH is the most reactive Li precursor and the highly porous, large-surface-area structure of fumed silica allows uniform distribution of LiOH over the silica framework. This can significantly reduce the formation temperature of



**Scheme 1.** Reaction scheme for  $CO_2$  adsorption and desorption on  $Li_4SiO_4$ . This scheme is a simplified cartoon.  $Li_4SiO_4$  particle morphology does not need to be spherical, and  $Li_2CO_3$  and  $Li_2SiO_3$  generated during the  $CO_2$  adsorption can also exist as a dispersed domains rather than a well-defined core-shell structure.

the Li<sub>4</sub>SiO<sub>4</sub> phase down to 600 °C. The Li<sub>4</sub>SiO<sub>4</sub> synthesized at 600 °C showed a highly macroporous structure that has significantly higher BET surface area than that of conventional nonporous Li<sub>4</sub>SiO<sub>4</sub>, which allows efficient CO<sub>2</sub> adsorption and desorption at a mild temperature regime.

#### 2. Experimental section

#### 2.1. Material preparation

Li<sub>4</sub>SiO<sub>4</sub> samples were synthesized by using a solid-state transformation method. In a typical synthesis, 2.01 g of LiOH (Daejung), 1.14 g of fumed silica (Cab-O-Sil M5, Cabot), and 5 mL of H<sub>2</sub>O were mechanically ground in an agate mortar for 30 min. The Li:Si molar ratio was 4.4:1. To improve the synthesis, 10% excess lithium (compared to the required molar stoichiometry of 4.0:1) was added in order to compensate the sublimated lithium amount during the synthesis [18]. The resultant slurry was dried at 100 °C for 1 h. The resultant solid was heat-treated in alumina crucibles at 600, 700, and 800 °C (temperature ramp: 5 °C min<sup>-1</sup>) for 7 h under flowing dry air (500 mL min<sup>-1</sup>). The resultant samples were denoted as 'LH-n', where n indicates the thermal treatment temperature. For comparison, Li<sub>4</sub>SiO<sub>4</sub> samples were also prepared by using Li<sub>2</sub>CO<sub>3</sub> (Junsei) and LiNO<sub>3</sub> (Aldrich) as a Li precursor following the same solid-state transformation method. In all cases, the Li:Si molar ratio was fixed at 4.4:1. The resultant samples synthesized using Li<sub>2</sub>CO<sub>3</sub> and LiNO<sub>3</sub> as Li precursors were respectively denoted as 'LC-n' and 'LN-n', where n again indicates the synthesis temperature.

#### 2.2. Characterization

Powder X-ray diffraction (XRD) patterns were recorded using a D2-phaser (Bruker) equipped with Cu K $\alpha$  radiation (30 kV, 10 mA) and a LYNXEYE detector. Diffractograms were collected from 10.0° to 60.0° (2 $\Theta$ ) with a resolution of 0.01° and a count time of 2.5 s at

Download English Version:

https://daneshyari.com/en/article/6584263

Download Persian Version:

https://daneshyari.com/article/6584263

Daneshyari.com