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a b s t r a c t

We study stability of a condensing liquid film of a binary vapor mixture. When a binary vapor mixture of
some kind is cooled on a substrate, a condensing liquid film emerges to take an inhomogeneous form
such as a droplet one due to the solutal Marangoni effect. In order to analyze this phenomenon, we apply
the long-wave approximation to the condensing liquid film and derive a nonlinear partial differential
equation describing the spatio-temporal evolution of the film thickness. An interfacial boundary condi-
tion taking account of an effect of mass gain of the liquid film is adopted. Based on this model, we perform
a linear stability analysis around a flat-film solution. We obtain an evolution equation of the amplitude of
a disturbance, from which the cutoff and fastest growth wavenumbers are deduced. The maximum value
of the cutoff wavenumber relative to the film thickness and its film thickness are estimated for water–
ethanol mixture at atmospheric pressure. We numerically verify the long-wave nature of the instability
of the condensate liquid film in this system. A significant difference in their values is found for low-
ethanol fractions of the ambient vapor whether or not the temperature dependence of the mass transfer
coefficient is considered. The wavenumber of a pattern of the liquid film observed in the experiment has
the same parameter dependence as that of the fastest growth wavenumber.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

When a binary vapor mixture of miscible liquids of some kind is
condensed on a cooled substrate, the condensate liquid film often
takes an inhomogeneous state such as a dropwise form. This phe-
nomenon was first presented by Mirkovich and Missen [1]. Up to
the present, a number of experiments on binary vapor condensa-
tion have been carried out and demonstrated nonfilmwise conden-
sation (see Table 1 of Ref. [2] or Ref. [3]).

Ford and Missen [4] expressed the instability criterion of the
condensate liquid film as
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where r and h represent the surface tension and film thickness. Eq.
(1) corresponds to the case that the surface tension is stronger on a
thicker part of the condensate than on a thinner one. In such a case,
a stronger surface tension on a thicker portion pulls the liquid away
from a thinner one and the deviation from the flat-film state is
amplified. Since the surface tension is a function of temperature
and concentration,
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where TI and c are the interface temperature and mass fraction of
the component having a lower boiling point. The local thermody-
namic equilibrium state is assumed at the liquid–vapor interface
in evaluating (@c/@TI)sat in Eq. (2), which is negative by the defini-
tion, unless the surface tension has a minimum or maximum point
at an intermediate concentration. Since the substrate is cooled, the
condition @TI/@h > 0 always holds. Furthermore, in most cases the
dependence of surface tension on temperature is negligible com-
pared to that on concentration. Therefore, the necessary condition
for the condensate liquid film to be destabilized by the solutal
Marangoni effect is

@r
@c

< 0; ð3Þ

which indicates that the surface tension of the high-boiling-point
component is larger than that of the low-boiling-point component.

Stability of a flat-film state of the condensing liquid film in such
a system was investigated by Hijikata et al. [5] However, they
disregarded two interfacial boundary conditions necessary for
condensation of binary mixtures: mass balance of the total mixture
and that of a one component of the mixture. The first boundary
condition entails mass gain of the liquid during the condensation
process. It follows that Ref. [5] did not consider this effect.
However, the experiments [4,6] confirmed that there always exists
a very thin layer of the liquid (1 lm order) between the condensate
droplets, preventing the liquid film from rupturing. This observa-
tion is different from the theoretical consequence that an unstable
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liquid film subjected to only the destabilizing (thermal) Marangoni
effect and the stabilizing gravity effect inevitably tends to rupture
[7]. Moreover, since the length scale at which intermolecular forces
between the liquid film and the solid surface influence the dynam-
ics of the liquid–gas interface is about 10 to 100 nm, it is found that
the aforementioned very thin liquid layer between the droplets is
not induced by any intermolecular forces, or is essentially irrele-
vant to the wettability of the solid surface. The above consideration
implies that the effect of mass gain by condensation balances with
that of solutocapillarity in such a length scale.

The second boundary condition which Hijikata et al. [5] ignored
yields a relationship between the condensation mass flux and the
concentration field. Since the liquid and vapor concentrations at
the interface are determined by the interface temperature via the
phase equilibrium condition, the mass flux becomes a function of
the interface temperature. In Ref. [5] a similar relationship be-
tween the mass flux and the interface temperature is also formu-
lated, assuming that the mass transfer coefficient is independent
of temperature. However, if we allow for the second boundary con-
dition, it can be shown that the mass transfer coefficient depends
on temperature. Therefore, when the interface is irregular the
value of the mass transfer coefficient locally varies owing to the
variation of the interface temperature.

In this work, we first model the dynamics of a condensing liquid
film of a binary vapor mixture. Applying the long-wave approxima-
tion [8] to the condensate liquid film, a nonlinear partial differen-
tial equation describing the spatio-temporal evolution of the film
thickness is derived. The advantages of the use of such a low-
dimensional approximate model are twofold: (i) to obtain analyti-
cal expressions for the dispersion relation of disturbances and for
the stability criterion; and (ii) to reduce the computational amount
in seeking time-dependent solutions at the strongly nonlinear
regime. In the present paper, we focus on the linear stability of
the flat-film state of the condensate, pertaining to the former
advantage, and nonlinear calculations of the model, pertaining to
the latter, shall be done subsequently. We incorporate the two
boundary conditions mentioned above in deriving the model. The
first boundary condition makes the basic state with a flat liquid–
vapor interface time-dependent. Most studies on the stability of
evaporating or condensing liquid layers (e.g. Ref. [9]) have treated
the basic state as a steady state, assuming that the variation of the
basic state is sufficiently slow compared to the growth rate of
disturbances (the quasi-steady hypothesis). However, in the
framework of the long-wave model the evolution equation of the
amplitude of disturbances is easily integrable even when the aver-
age thickness of the liquid layer is varying by evaporation or con-
densation [10]. Reference [10] distinguished an algebraic behavior
of the amplitude, arising from the mass loss or gain, from an
exponential one and neglected the former. Thus the linear stability
property provided by the long-wave model is more global in time.
We also examine the influence of the dependence of the mass
transfer coefficient on the interface temperature resulting from
the second boundary condition.

2. Formulation

2.1. Governing equations

We consider a two-dimensional condensate liquid film of a bin-
ary vapor mixture on a horizontal wall uniformly cooled at a tem-
perature Tw, as depicted in Fig. 1. The x-axis coincides with the
liquid–solid boundary and the z-axis points vertically upward to
the wall. The mass fraction of the surrounding vapor is fixed to
c0 at z = H; here we assume that H is much larger than the thick-
ness of the condensate and never affected by the variation of the

latter. The governing equations of the liquid phase are the continu-
ity, Navier–Stokes, energy and mass transport equations:

r � v ¼ 0; ð4Þ
qðv t þ v � rvÞ ¼ �rpþ gr2v � qgez; ð5Þ
Tt þ v � rT ¼ jr2T; ð6Þ
ct þ v � rc ¼ Dr2c; ð7Þ

where v, p, T and c are the velocity, pressure, temperature and mass
concentration fields, respectively, inside the condensate. The differ-
ential operator is r� (@x,@z). The symbols q, g, j and D denote the
density, dynamic viscosity, thermal diffusivity and mass diffusivity
of the liquid, respectively, all assumed to be constant, g the gravita-
tional acceleration, and ez the unit vector in the z direction. Here we
have neglected buoyancy, thermo-diffusion and diffusion-thermo
effects.

We impose the no-slip, no-penetration, constant temperature
and reflecting concentration boundary conditions at the wall,

v ¼ 0; T ¼ Tw; cz ¼ 0 at z ¼ 0: ð8Þ

At the liquid–vapor interface (z = h(x, t)), the mass balance condition
is expressed as

J ¼ qðv I � n� v � nÞ; ð9Þ

where J is the condensation mass flux, n the upward-directed unit
vector normal to the interface,

n ¼ ð�hx;1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðhxÞ2

q ; ð10Þ

and vI the interface velocity, which satisfies the kinematic
condition,

v I � n ¼
htffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðhxÞ2
q : ð11Þ

Eq. (9) was not taken into account in Ref. [5]. We assume the con-
tinuity of the interfacial stress and energy:

ðp� p0Þn� 2gE � nþ 2rKnþ ðt � rrÞt ¼ 0; ð12Þ
JL ¼ krT � n; ð13Þ

where p0 is the ambient vapor pressure, E the rate-of-strain tensor
in the liquid phase, r the surface tension, K the mean curvature of
the interface,

2K ¼ hxx

f1þ ðhxÞ2g3=2 ; ð14Þ

t the unit tangent vector to the interface,

t ¼ ð1; hxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðhxÞ2

q ; ð15Þ

L the latent heat and k the thermal conductivity of the liquid. Note
that the effects of vapor recoil, stress induced by the vapor motion,
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Fig. 1. Sketch of a condensate liquid film of a binary vapor mixture on a cooled
horizontal surface.
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