Accepted Manuscript

Glucose-ethanol-assisted synthesis of amorphous CoO@C core-shell composites for electrochemical capacitors electrode

Kuaibing Wang, Mingbo Zheng, Xiaobo Shi, Zixia Lin, Hongju Wang, Yanan Lu

PII: S1385-8947(14)01696-9

DOI: http://dx.doi.org/10.1016/j.cej.2014.12.073

Reference: CEJ 13074

To appear in: Chemical Engineering Journal

Received Date: 2 October 2014
Revised Date: 11 December 2014
Accepted Date: 18 December 2014

Please cite this article as: K. Wang, M. Zheng, X. Shi, Z. Lin, H. Wang, Y. Lu, Glucose-ethanol-assisted synthesis of amorphous CoO@C core-shell composites for electrochemical capacitors electrode, *Chemical Engineering Journal* (2014), doi: http://dx.doi.org/10.1016/j.cej.2014.12.073

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Glucose-ethanol-assisted synthesis of amorphous CoO@C core-shell composites for electrochemical capacitors electrode

Kuaibing Wang,^a,* Mingbo Zheng,^b Xiaobo Shi,^c Zixia Lin,^b Hongju Wang,^a Yanan Lu^a

^a Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095, P. R. China

^b Department of Electronic Science and Engineering, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093, P. R. China.

^c College of Agriculture, Nanjing Agricultural University, Nanjing 210095, P. R. China

ABSTRACT: Amorphous core-shell CoO@C and Mn₃O₄@C composites have been synthesized by documenting a simple glucose-ethanol-assisted approach and characterized by SEM, TEM, X-ray diffraction, energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. Electrochemical measurements are performed to examine the CoO@C composites, and the result shows that CoO@C structure has much higher capacitance, higher energy and power density and better cycling performance than that of C/CoO hybrids. This improvement can be attributed to the nature of core-shell structure, which promotes fast Faradaic charging and discharging reaction and also minimizes both the ionic and electronic transportation distances and therefore improves the resulting electrode kinetic performance.

Keywords: Core-shell; Cobalt oxide; Glucose; Composites; Cycling performance; Electrochemical.

Download English Version:

https://daneshyari.com/en/article/6585191

Download Persian Version:

https://daneshyari.com/article/6585191

Daneshyari.com