
Parametrized temperature distribution and efficiency of convective straight
fins with temperature-dependent thermal conductivity by a new modified
decomposition method

Jun-Sheng Duan a,⇑, Zhong Wang b, Shou-Zhong Fu b, Temuer Chaolu c

a College of Sciences, Shanghai Institute of Technology, Fengxian District, Shanghai 201418, PR China
b Department of Mathematics, Zhaoqing University, Zhaoqing, Guang Dong 526061, PR China
c College of Sciences and Arts, Shanghai Maritime University, Pudong District, Shanghai 200135, PR China

a r t i c l e i n f o

Article history:
Received 21 April 2012
Received in revised form 25 November 2012
Accepted 27 November 2012
Available online 5 January 2013

Keywords:
Temperature distribution
Straight fin
Boundary value problems
Adomian decomposition method

a b s t r a c t

In this paper, the nonlinear differential equation for temperature distribution of convective straight fins
with temperature-dependent thermal conductivity is solved by using a new modified decomposition
method (MDM) for boundary value problems. In the new MDM the recursion scheme of the solution com-
ponents does not involve any undetermined coefficients. Using the new method, the temperature distri-
bution and the efficiency of the fin can be expressed analytically as functions containing two fin
parameters without any undetermined coefficients, which greatly facilitates parameter analysis.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Fins are extensively employed to enhance the heat transfer be-
tween the primary surface and its convective, radiating or convec-
tive-radiating environment. The study of heat transfer in fins with
temperature-dependent thermal conductivity is practical and
essential. The governing equation of straight fins with temperature-
dependent thermal conductivity is in the form of a nonlinear
differential equation for which exact analytical solutions can not
be obtained in general. For fin parameter analysis, approximate
analytical solutions are more practical than numerical solutions.

Hung and Appl [1] presented bounds for the temperature distri-
bution of a straight fin with temperature-dependent thermal con-
ductivity and internal heat generation. Aziz and Huq [2] used the
regular perturbation method to present a closed form solution
for a straight convecting fin with temperature-dependent thermal
conductivity. Muzzio [3] obtained approximate analytical solutions
based on the Galerkin method, which involves selection of suitable
basis functions. The Adomian decomposition method (ADM) [4–
10], the homotopy analysis method [11,12], and the least squares
method [13] have been used to solve the various nonlinear heat
transfer models.

In this paper, we consider the nonlinear heat transfer model by
a new modified decomposition method (MDM) for the nonlinear
BVPs [14].

The ADM [15–24] is a well-known systematic method for prac-
tical solution of linear or nonlinear and deterministic or stochastic
operator equations, and provides efficient algorithms for approxi-
mate analytical solutions and numeric simulations for real-world
applications in the applied sciences and engineering. The ADM per-
mits us to solve both nonlinear initial value problems (IVPs) and
boundary value problems (BVPs) [19,25–32] without unphysical
restrictive assumptions. Furthermore the ADM does not require
the use of Green’s functions which are not easily determined in
most cases.

In [4–7] nonlinear heat transfer problems were solved by using
the method of undetermined coefficients in the ADM. In [8–10]
Adomian–Rach modified decomposition method, alias double
decomposition method [25,26], was used for the nonlinear BVPs.
The method decomposes the solution, the nonlinearity and the
constants of integration, and then designs an appropriate modified
recursion scheme to compute the solution components and the
components of the constants of integration.

Recently Duan and Rach [14] have presented a new MDM for
solving BVPs. The new modification first derives an equivalent
nonlinear integral equation for the solution without any undeter-
mined coefficients, and then by the decompositions of the solution
and the nonlinearity, designs a modified recursion scheme to com-
pute the solution components.
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The dimensionless straight fin model we consider in this work
includes two fin parameters, which describe the variation of the
thermal conductivity and fin structure. How the temperature dis-
tribution and the efficiency of a fin depend on the fin parameters
is an important and practical issue.

In this paper we show that by the new MDM we can explicitly
express the temperature distribution and the fin efficiency depend-
ing on the two fin parameters and without any undetermined
coefficients.

In the next section we describe the model of the straight fin
with a temperature-dependent thermal conductivity. In Section 3,
we present dimensionless temperature distribution and efficiency
of the straight fin with two fin parameters by the Duan–Rach MDM
for BVPs. In Section 4, a comparison with the method of undeter-
mined coefficients in the ADM is considered. Section 5 emphasizes
our results.

2. Problem description

Consider a straight fin with a temperature-dependent thermal
conductivity k(T), arbitrary constant cross-sectional area S, perim-
eter P and length b. The fin is attached to a base surface of uniform
temperature Tb and its tip is insulated. Under steady-state condi-
tions, the face of the fin are exposed to a convective environment,
where the temperature Ta and the heat transfer coefficient h are as-
sumed to be uniform. Fig. 1 shows an illustration of the fin geom-
etry, where the axial distance x is measured from the fin tip. The
one-dimensional energy balance equation is given

S
d
dx

kðTÞdT
dx

� �
� PhðT � TaÞ ¼ 0; ð2:1Þ

where T is the temperature distribution on the fin and the thermal
conductivity of the fin material is assumed to be a linear function of
temperature according to

kðTÞ ¼ ka½1þ kðT � TaÞ� ð2:2Þ

and where ka is the thermal conductivity at the ambient tempera-
ture and k is the parameter describing the variation of the thermal
conductivity.

Employing the following dimensionless variables and
parameters

h ¼ T � Ta

Tb � Ta
; n ¼ x

b
; b ¼ kðTb � TaÞ; W2 ¼ hPb2

kaS
ð2:3Þ

the formulation of the problem reduces to

d2h

dn2 þ bh
d2h

dn2 þ b
dh
dn

� �2

�W2h ¼ 0; ð2:4Þ

subject to the boundary conditions

dh
dn

����
n¼0
¼ 0; hjn¼1 ¼ 1: ð2:5Þ

We consider the ranges of the two dimensionless fin parameters:
0 < W 6 1.5 and 0 6 b 6 1.

3. Parametrized temperature distribution and efficiency by a
new MDM

For convenience, we rewrite Eq. (2.4) in Adomian’s operator-
theoretic form

Lh ¼ N h; ð3:1Þ

where Lð�Þ ¼ d2

dn2 ð�Þ, and

N h ¼ W2h� bðh0Þ2

1þ bh
: ð3:2Þ

We define the inverse linear operator

L�1ð�Þ ¼
Z n

1

Z n

0
ð�Þdndn; ð3:3Þ

then applying the inverse operator to Eq. (3.1) we obtain

hðnÞ � hð1Þ � h0ð0Þðn� 1Þ ¼ L�1N h; ð3:4Þ

which already involves both of the specified boundary conditions.
Therefore we have

hðnÞ ¼ 1þ L�1N h: ð3:5Þ

We decompose the solution and the nonlinearity

hðnÞ ¼
X1
n¼0

hnðnÞ; N hðnÞ ¼
X1
n¼0

AnðnÞ; ð3:6Þ

where An(n) are the Adomian polynomials, which are defined by the
formula [15]

AnðnÞ ¼
1
n!

@n

@knN
X1
k¼0

hkðnÞkk

 !�����
k¼0

: ð3:7Þ

The first two Adomian polynomials for the specified nonlinearity in
(3.2) are

A0ðnÞ ¼
W2h0 � b h00

� �2

1þ bh0
;

A1ðnÞ ¼
W2h1 þ b2h1 h00

� �2 � 2bh00h
0
1 � 2b2h0h

0
0h
0
1

ð1þ bh0Þ2
:

We note that several algorithms for symbolic programming to
efficiently generate the Adomian polynomials were devised by
Adomian and Rach [15], Rach [33,34], Wazwaz [35], Abdelwahid
[36], Biazar and Ilie [37], Zhu et al. [38] and Azreg-Aı̈nou [39].
New, efficient algorithms and subroutines in MATHEMATICA for
rapid computer-generation of the Adomian polynomials to high or-
ders have been provided by Duan [40–42].

Upon substituting (3.6) into (3.5), we have

X1
n¼0

hnðnÞ ¼ 1þ L�1
X1
n¼0

AnðnÞ:

Thus we have derived the recursion scheme for the solution
components

h0ðnÞ ¼ 1� c; ð3:8Þ
h1ðnÞ ¼ c þ L�1A0ðnÞ; ð3:9Þ
hnþ1ðnÞ ¼ L�1AnðnÞ; n P 1; ð3:10Þ

where c is a predetermined parameter, which can affect the effec-
tive region of convergence of solution approximations [14,40].Fig. 1. Geometry of a straight fin.
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