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a b s t r a c t

Numerical investigation of natural convection within porous square enclosures has been performed for
various thermal boundary conditions based on thermal aspect ratio on bottom and side walls. Penalty
finite element analysis with bi-quadratic elements is used to solve the governing equations. The numer-
ical solutions are studied in terms of streamlines, isotherms, heatlines, local and average Nusselt numbers
for a wide range of parameters Da(10�5–101), Pr(0.015–1000) and Ra(Ra = 103–105). At low Darcy number
(Da = 10�5), heatlines are perpendicular to the isotherms indicating conduction dominant heat transfer.
As Da increases to 10�3, convection is initiated and the thermal mixing has been observed at the central
regime for all As. At low Prandtl number (Pr = 0.015) with high Darcy number (Da = 10�2 and Da = 101),
multiple circulations are observed in streamlines and heatlines and they suppressed for higher Prandtl
number (Pr = 1000). Isotherms are highly compressed along bottom wall at higher Prandtl numbers
(Pr = 0.7 and 1000) at A = 0.1 and 0.5. Temperature gradient is found to be high at the center of the bottom
wall for A = 0.1 due to dense heatlines at that zone and that decreases as A increases from 0.1 to 0.9, irre-
spective of Pr, Da. Also, the temperature gradient is smaller at the top portion of side walls for A = 0.1 due
to sparse heatlines along those zones and that is high for A = 0.9 due to dense heatlines. Distribution of
heatlines illustrate that significant heat transport occurs from hot bottom wall to the top portion side
walls at higher Darcy number (Da = 101). It is found that Nub attains maximum at X = 0.5 and minimum
at corners for Da = 10�5, whereas that exhibits sinusoidal variation for Da = 10�3 and Da = 101 irrespective
of Pr and A. It is also found that Nul follows wavy pattern at low Prandtl number (Pr = 0.015) with higher
Darcy number (Da = 101) irrespective of A due to larger gradients of heatfunctions at several locations of
left wall. The average Nusselt number show that the overall heat transfer rate is high at A = 0.1 compared
to that of A = 0.5 and A = 0.9 irrespective of Da and Pr due to larger gradients of heatfunctions at A = 0.1.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Natural convection within closed cavities has been extensively
studied over past several years due to its wide range of applica-
tions [1]. These applications span diverse fields such as melting
process [2], geothermal [3], reservoir [4], electronics cooling [5],
food [6], heat exchangers [7] etc. Extensive investigations have
been carried out on natural convection heat transfer by earlier
researchers [8–12].

Several investigations were undertaken on natural convection
within a porous square enclosures. Sankar et al. [13] studied the
convective flow and heat transfer in a square porous cavity with
partially active thermal walls. Badruddin et al. [14] investigated

the heat transfer details in a porous square duct using finite ele-
ment method. Alloui et al. [15] studied natural convection flows
within a square cavity filled with binary fluid saturated porous
media whereas some portion of the bottom surface is isothermally
heated while the upper surface is maintained at constant cold tem-
perature and all other surfaces are adiabatic. Varol et al. [16] ana-
lyzed the effects of diagonally inserted conductive thin plate on
natural convection flow in a cavity filled with a porous medium.
Mealey and Merkin [17] investigated natural convection flow with-
in a porous square region with internal heat generation at a rate
proportional to a power of the temperature difference. Pradyumna
and Ghosh [18] analyzed the buoyancy driven flow under the influ-
ence of g-jitter perpendicular to the applied thermal gradient in
square porous cavity.

However, most of the studies in the literature are presented in
terms of streamlines and isotherms. Streamlines are generally used
to explain fluid flow, isotherms are used to illustrate the temperature
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distribution in a domain, which may not be suitable to visualize the
path of the heat transfer. Heatline is a useful tool to visualize the path
of heat flow and also to find out the intensity of heat transfer in a do-
main. The heatline concept was first developed by Kimura and Bejan
[19] to visualize convective heat transfer. Bejan [20] also analyzed the
heatline approach for various physical situations.

A few number of articles were presented using this heatline
concept for various physical phenomena. Bello-Ochende [21] for-
mulated Poisson-type heatfunction to study heat energy distribu-
tion pattern due to natural convection within a square cavity.
Dalal and Das [22] studied the natural convection heat transfer in-
side a two-dimensional cavity with a wavy right vertical wall
where the bottom wall is heated by a spatially varying tempera-
ture and other three walls are kept at constant lower temperature.
Review on Bejan’s heatlines and masslines for convection visuali-
zation was also presented by Costa [23]. Recently, Varol et al.
[24] analyzed the natural convection heat transfer within porous
triangular enclosures with various boundary conditions. Kaluri
et al. [25] investigated heat distribution and thermal mixing during
natural convection within differentially heated porous square cav-
ities based on Bejan’s heatlines. Waheed [26] studied natural con-
vection flows within porous square enclosures within rectangular
enclosure whereas two horizontal walls are insulated while the left
wall is hot and right walls are maintained at cold temperature.

The objective of the present investigation is to study the natural
convection flows within square cavity for various boundary condi-
tions. An important non-dimensional parameter ‘‘thermal aspect
ratio (A)’’ is considered for thermal boundary conditions. By vary-
ing thermal aspect ratio (A) from 0 to 1, various thermal boundary
conditions are imposed on the bottom and side walls, such as A = 0
corresponds to non-uniformly heated bottom wall and isothermal
cold side walls whereas A = 1 corresponds to uniformly heated bot-
tom wall and linearly heated side walls.

In the current study, we have used generalized non-Darcy mod-
el, neglecting the Forchheimer inertia term, to predict the flow and
thermal characteristics in porous medium. This model based on
volume averaging principles was developed by Vafai and Tien
[27]. Numerical simulations were performed using Galerkin finite
element method with penalty parameter to solve the nonlinear
coupled partial differential equations for flow and temperature

fields. The Galerkin method is further employed to solve the Pois-
son equation for streamfunctions and heatfunctions. The advan-
tage of this method is that the homogeneous Neumann boundary
conditions are automatically built in the formulations. The heat
transfer characteristics are studied by analyzing local and average
Nusselt numbers. Also, various qualitative features of local and
average Nusselt numbers are adequately explained based on heat-
lines. Various fluids of scientific and industrial importance have
been chosen for the study, namely molten metals (Pr = 0.015), air
(Pr = 0.7) and olive/engine oils (Pr = 1000).

2. Mathematical formulation and simulation

2.1. Governing equations and boundary conditions

A schematic diagram of a two dimensional square cavity with
the physical dimensions is shown in Fig. 1. The boundary condi-
tions of velocity are considered as no-slip on solid boundaries. Con-
fined fluid within porous bed is considered as incompressible,
Newtonian and the flow is assumed to be laminar. For the treat-
ment of the buoyancy term in the momentum equation, Bous-

Nomenclature

A temperature difference aspect ratio A ¼ Th�Tc
TH�Tc

� �
or ther-

mal aspect ratio
Da Darcy number
g acceleration due to gravity, m s�2

k thermal conductivity, W m�1 K�1

H heatfunction
L length of the side of the square cavity, m
Nu local Nusselt number
Nu average Nusselt number
p pressure, Pa
P dimensionless pressure
Pr Prandtl number
R Residual of weak form
Ra Rayleigh number
T temperature, K
Th temperature at the bottom edges of the side walls, K
Tc temperature at the top edges of the side walls, K
TH temperature at the center of the bottom wall, K
u x component of velocity
U x component of dimensionless velocity

v y component of velocity
V y component of dimensionless velocity
X dimensionless distance along x coordinate
Y dimensionless distance along y coordinate

Greek symbols
a thermal diffusivity, m2 s�1

b volume expansion coefficient, K�1

c penalty parameter
h dimensionless temperature
m kinematic viscosity, m2 s�1

q density, kg m�3

U basis functions
w streamfunction

Subscripts
b bottom wall
l left wall
r right wall
s side wall

             Adiabatic Wall

        Y, V

  X, U

θ =θ = A (1−Y) A (1−Y)

= A + (1−A) Sin(  X)πθ

g

Fig. 1. Schematic diagram of the physical system.
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