Accepted Manuscript

Plasma-catalytic oxidation of acetone in annular porous monolithic ceramicsupported catalysts

Hung Quang Trinh, Young Sun Mok

PII: DOI: Reference:	S1385-8947(14)00503-8 http://dx.doi.org/10.1016/j.cej.2014.04.071 CEJ 12050
To appear in:	Chemical Engineering Journal
Received Date:	31 December 2013
Revised Date:	15 April 2014
Accepted Date:	17 April 2014

Please cite this article as: H.Q. Trinh, Y.S. Mok, Plasma–catalytic oxidation of acetone in annular porous monolithic ceramic-supported catalysts, *Chemical Engineering Journal* (2014), doi: http://dx.doi.org/10.1016/j.cej. 2014.04.071

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1	Plasma-catalytic oxidation of acetone in annular porous monolithic
2	ceramic-supported catalysts
3	Hung Quang Trinh, Young Sun Mok [*]
4	Department of Chemical and Biological Engineering, Jeju National University, Jeju 690-756, Korea
5	*Corresponding author, Tel: (+82)64-754-3680, Fax: (+82)64-755-3670, E-mail:
6	smokie@jejunu.ac.kr
7	
8	Abstract
9	Oxidative decomposition of acetone over multichannel monolithic ceramic-supported
10	catalysts combined with non-thermal plasma was investigated. Plasma was generated inside the
11	porous ceramic by applying an alternating current (AC) voltage to the coaxial electrodes. The tandem
12	plasma-catalytic reactor consisted of two ceramic-supported catalysts containing zinc oxide (ZnO)
13	and/or manganese oxide (MnO ₂), in which the first supported catalyst was exposed to the plasma
14	discharge and the second one was placed in the post-plasma region. Several sets of catalyst
15	arrangements such as MnO2-loaded monolith followed by bare monolith, ZnO-loaded monolith
16	followed by bare monolith, ZnO-loaded monolith followed by MnO_2 -loaded monolith and two
17	consecutive MnO ₂ -loaded monoliths with different Mn contents were examined in relation to the
18	acetone decomposition and the byproducts formation. More than 90% of acetone was decomposed at
19	a specific input energy (SIE) of about 1.0 kJ $L^{\text{-1}}$ with the catalyst arrangement of MnO ₂ (0.1% Mn)
20	followed by MnO_2 (5.0% Mn), while the decomposition efficiency obtained with two consecutive
21	bare monoliths was about 66 % at the same SIE. The use of ZnO in the plasma discharge region did
22	not largely improve the acetone decomposition efficiency. Wherever it is placed either in the plasma
23	discharge region or in the post-plasma region, MnO_2 catalyst substantially promoted the acetone
24	decomposition, obviously due to the dissociation of ozone into far more reactive oxygen atoms
25	available for oxidizing acetone molecules.

27 Keywords: Acetone decomposition; DBD plasma; Catalyst; Manganese dioxide; Zinc oxide

Download English Version:

https://daneshyari.com/en/article/6586419

Download Persian Version:

https://daneshyari.com/article/6586419

Daneshyari.com