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The present study establishes an embedding finite element method appropriate for solving primitive var-
iable forms of the Navier-Stokes equations and energy equation in a complex physical domain. The sta-
tionary solid obstacle in the flow domain is embedded in a non-uniform Cartesian grid and the governing
equations are calculated through a finite element formulation. A compact interpolating scheme near the
immersed boundaries is used to ensure the accuracy of the solution in the cut cells. We have developed a
numerical algorithm based on the operator splitting technique, balance tensor diffusivity (BTD), Runge-
Kutta time-stepping method, and a bi-conjugate gradient iterative solver. Three numerical examples are
chosen to test the accuracy and flexibility of the proposed scheme. Simulation of flow past a stationary
circular cylinder is conducted to validate the accuracy of the present method for solving heat transfer
problems. Flow over circular cylinders in a tandem arrangement and a staggered tube bank with convec-
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tive heat transfer is computed to demonstrate the model’s ability to handle complex geometries.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

This paper presents an embedding finite element analysis of
heat transfer problems with fluid structure interactions. In the gov-
erning equations used to illustrate incompressible viscous flows
with force-convection problems, the effect of buoyancy and com-
pressibility are neglected. Thus, the momentum and continuity
equations and energy equation are decoupled and only one-way
interaction from the governing equations is considered. This is
because the Navier-Stokes equations are coupled through the
velocity, but the pressure does not appear in the continuity equa-
tion. To resolve this, we adopt a decoupled numerical algorithm
based on the projection method to overcome the difficulties of
coupling between the continuity and momentum equations. The
projection method has been pioneered by Chorin [1] to represent
the Navier-Stokes equations for the solution of multi-dimensional
flow problems. This projection method, also called the fractional
step method, has been studied over the past years by many inves-
tigators, who have examined this method by using approximations
of the advection term and the scheme used for the time discretiza-
tion [2-6]. The main advantage of the projection is that the incom-
pressibility conditions yield an approximate velocity field, which
was made divergence-free from an orthogonal projection of the
apparent velocity field. The method has been verified to simulate
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complex flows and accordingly is widely used in the field of com-
putational fluid dynamics.

In this study, we have taken advantage of the operator splitting
technique, balance tensor diffusivity (BTD), and Runge-Kutta time-
stepping method based on the projection method for solving 2D
viscous flow problems with heat transfer. To reduce computational
effort, the system of the equations is solved simultaneously by Ja-
cobi iteration using the mass lumping technique, thus avoiding the
formulation of global matrices. Only the pressure Poisson equation
is solved by using a bi-conjugate gradient iterative scheme [7], and
this is done by storing the non-zero values during calculations. A
bi-conjugate gradient iterative scheme is adopted to solve the
simultaneous equations to obtain the solution at the global nodes.
The implementation of the present iterative solution procedure to
solve CFD problems on a personal computer is straightforward be-
cause the scheme has been efficiently implemented to accommo-
date the requirement of small computer memory to store the
non-zero entries of the matrices.

Cartesian meshes have commonly been used for solving prob-
lems with irregular geometry through the body-fitted or unstruc-
tured grid methods. But the computational savings of body-fitted
or unstructured finite element meshes become a huge challenge
when solving problems with a moving boundary. Our method, in
contrast, uses the generation of a structural Cartesian grid rather
than that required by body-fitted or unstructured finite element
meshes. On the other hand, the underlying Cartesian mesh is used
as a powerful tool for saving computational time. In the past
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several decades the immersed boundary method has become more
popular, following its introduction by Peskin [8], due to its simplic-
ity and flexibility in solving moving complex boundary problems
with less computational cost and memory requirements than other
methods.

Mittal and laccarino [9] review important claims that the IB
method to simulate incompressible viscous flows can be classified
into two major categories, namely continuous forcing [8,10-12]
and discrete forcing [13-15]. An early development in the history
of the continuous forcing IB method was the note by Peskin [8] that
the Navier-Stokes should add a forcing term before the discretiza-
tions. A number of studies [10-12,16,17] have investigated for the
modifications and improvements of this method since Peskin’s
paper [8]. In the continuous forcing IB method, the boundaries
are modeled as pure force-generators for the simulation of the
Navier-Stokes equations related to fixed or moving obstacles inter-
acting with a fluid. It has been argued that the forcing term appear-
ing in the discrete forcing method can be either explicitly or
implicitly applied to the discretization of Navier-Stokes [13-15].
In this paper, we present numerical solution algorithm to solve
viscous flows with heat transfer in combination with the finite ele-
ment method and an embedding method based on an interpolation
scheme to handle the immersed boundary in the complex geome-
try. The key issue in using Cartesian grid methods is the imposition
of boundary conditions at the immersed boundary. To resolve this,
we adopt a compact interpolation scheme near the immersed
boundaries that allows us to retain second-order accuracy of the
solver. In the presence of the flow past several cylinders with an
arbitrary arrangement, the values of the flow variables at the
immersed cells are uploaded using a local reconstruction
scheme involving the virtual point and the projection node at the
immersed boundary. A second order interpolation scheme is used
to solve the values of the variables at the immersed cells. Thus
the use of finite element method has enabled us to solve a mesh
generation problem of great complexity. Finite element method
is found to be an effective tool to compute the flow variables
due to its good flexibility and stability. We should treat carefully
with the immersed cells and boundary condition to ensure a
conservative solution. Thus the present numerical procedure
exploits the advantages of both the interpolating scheme at the im-
mersed cells and the finite element method in the computational
domain.

Numerous experimental and numerical studies have conducted
heat-transfer over a stationary circular cylinder. Churchill and
Bernstein [18], Eckert and Soehngen [19], and Roshko [20] pro-
vided extensive discussions of the experimental results from these
studies. Using numerical methods, Momose and Kimoto [21] and
Bharti et al. [22] analyzed out the heat transfer over a stationary
cylinder at a Reynolds-number range similar to the present study.
Since the IB method is concerned, Yoon et al. [23] investigated IB
finite volume method for 2D laminar fluid flow and heat transfer
past a circular cylinder near a moving wall. Recently, Kim et al.
[24] studied the natural convection induced by the temperature
difference between a cold outer square enclosure and a hot inner
circular cylinder using an IB method. Feng and Michaelides [25]
applied the IB method with a difference method to solve the ther-
mal convection in particulate flows. Wang et al. [17] presented a
direct source scheme to the simulations of natural convection be-
tween concentric cylinders, and analyzed the flow past a stationary
circular cylinder to validate the accuracy of the present method for
solving heat transfer problems.

The flow past two cylinders is a significant topic of fluid-struc-
ture interaction. The arrangement of the cylinders vs. the flow
direction of the free stream is used to simulate the hydrodynamic
interaction between two cylinders. The arrangement of the cylin-
ders with respect to the free stream flow direction can be classified

into three major categories, namely tandem - the free stream flow
direction is parallel with the line of the centers of the cylinders,
transverse - the free stream flow direction is perpendicular to
the line of the cylinders centers, staggered. The flow past a pair
of cylinders in tandem arrangement have been thoroughly investi-
gated numerically in [26-32]. To our knowledge, there is less pub-
lication in respect of the isothermal flow past two cylinders in
tandem [33-35]. Buyruk [33] used numerical method to study
the force convection heat transfer for tandem, in-line and stag-
gered cylinders configurations. Juncu [34,35] presents a computa-
tional study of the steady and viscous flow around two tandem
cylinders. He reported results for force convection heat transfer
around two tandem circular cylinders at low Reynolds numbers
using a compact finite difference method, Reynolds number vary-
ing from 1 to 30 and fluid phase Prandtl number equal to 0.1, 1,
10 and 100. The present study is emphasized to the analysis of
forced convection heat transfer from two tandem cylinders in an
unsteady and viscous flow.

The contents of this paper are organized as follows. Section 2
revisits the governing equations for 2D viscous flow with forced
convection. Section 3 delineates the finite element scheme based
on projection method to discretize the governing Navier-Stokes
equations in primitive variables form. In Section 4, numerical re-
sults for three examples are examined: the effect of heat transfer
phenomena for flow past a circular cylinder, two cylinders in a tan-
dem arrangement, and flow past a staggered tube bank which is
composed by 77 circular cylinders with heat transfer. Concluding
remarks are presented in Section 5.

2. Governing equations

The governing equations for viscous flow can be expressed by
means of the non-dimensional form of the Navier-Stokes equa-
tions with forced convection in primitive variables form as:

Continuity equation
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Momentum equations
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for a Cartesian coordinate frame in which x-y represents the hori-
zontal and the vertical direction. The following parameters are used
to define the non-dimensional quantities in the above governing
equations and later physical explanations. u, v are the velocity vari-
ables in the x-, y-direction, respectively. p is the pressure, Re is the
Reynolds number, Pe = 2 = RePr is the Peclet number, Pr denotes
the Prandtl number.

3. Finite element scheme

In order to discretize the time derivative of the convection
equation, consider the following equation,
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