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a b s t r a c t

This article deals with the implementation of the lattice Boltzmann method (LBM) for the analyses of
non-Fourier heat conduction in 1-D cylindrical and spherical geometries. Evolution of the wave like tem-
perature distributions in the medium is obtained, and analysed for the effects of different sets of thermal
perturbations at the inner and the outer boundaries of the geometry. The LBM results are validated
against those available in the literature, and those obtained by solving the same problems using the finite
volume method (FVM). Results of the LBM are in excellent agreement with those reported in the litera-
ture, and with the results from the FVM. Computationally, the LBM has an advantage over the FVM.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Nothing is instantaneous. The maximum speed of propagation
is limited by the speed of light, i.e., c = 3.0 � 108m s�1. If the effects
of transport of thermal radiation (light is part of the thermal radi-

ation) are investigated at time scale of the O distance
speed of light � 10�9 s
� �

or

lower, even the transport by the fastest mode of heat transfer, i.e.,
radiation, becomes a transient process. Thus, a time lag C between
the cause and its associated effects exists. If the imposition of tem-
perature difference DT⁄ across a depth Dr⁄ is the cause, the effect,
the propagation of energy (heat flux) by conduction at any location
r⁄ in a medium with thermal conductivity k will be as below:

q�ðr�; t� þ CÞ ¼ �krT�ðr�; t�Þ ð1Þ

It is to be noted that the time lag C represents the difference in time
between the appearance of a temperature gradient and induction of
the corresponding heat flux. This time lag allows the system to
accommodate a finite speed of propagation of thermal signals, as
suggested by the theory of relativity.

In the aforementioned equation, if the thermal lag time

C ¼ a
C2

� �
! 0, where a is the thermal diffusivity and C is the speed

of propagation of the heat wave, Eq. (1) takes the familiar form of
the governing law of heat conduction, known as Fourier’s law of
heat conduction.

q�ðr�; t�Þ ¼ �krT�ðr�; t�Þ ð2Þ

Thus, the Fourier’s law of heat conduction (Eq. (2)) is based on the
assumption that there is no time lag between the cause and the ef-
fect. In other words, as soon as the temperature gradient is imposed,
the effect of conduction heat transfer will be felt instantaneously at
all locations in the medium. Therefore, the non-Fourier heat con-
duction equation (Eq. (1)) reduces to Fourier’s law of heat conduc-
tion (Eq. (2)) if heat is assumed to propagate at an infinite speed. If
the left hand side (LHS) of Eq. (1) is expanded into Taylor’s series,
and second and higher order terms are neglected, we get the
following:

C
@q�

@t�
þ q� ¼ �krT� ð3Þ

Thus, the assumption that the effects of the perturbations is felt
instantaneously at all locations does not hold true when a phenom-
enon is investigated at lower system time scales defined as the ratio
of the characteristic length dimension to the speed of propagation
of the perturbation. In most commonly encountered materials, the
time lag C is small enough to justify the omission of higher order
Taylor terms. The situation is encountered fairly often (the
‘Telegrapher’s equation’) and has application in areas other than
conduction. The hyperbolic heat conduction equation obtained by
ignoring the higher order terms, has been known to be fairly accu-
rate for materials with the large time lag too.

Almost 136 years after Fourier proposed the law of heat con-
duction (Eq. (2)), in 1958, Cattaneo [1] and Vernotee [2] suggested
a revision to accommodate the theory of relativity. They proposed
a form of heat conduction equation wherein there exists a constant
thermal time lag between the cause and its effects, thus generaliz-
ing the heat conduction equation (Eq. (3)).
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The non-Fourier heat conduction model which assumes the fi-
nite propagation speed of thermal waves has found extensive
applications in the analysis and design of thermal systems [3–8].
These include heat transfer in a biological system [3], in heat trans-
fer applications with time dependant boundary conditions [4],
thermal systems irradiated with pulse-laser irradiation [5–7] and
single-phase reactions [8].

Unlike Fourier conduction (Eq. (2)), the analysis becomes diffi-
cult in the non-Fourier conduction (Eq. (3)) that is based on a finite
propagation speed C ¼

ffiffiffia
C

p� �
of the heat front. With the former, the

governing equation is parabolic and in the latter, it is hyperbolic.
Thus, in the literature, heat transfer with the consideration of
non-Fourier effect is frequently referred to as hyperbolic heat con-
duction (HHC) [9–13].

In HHC, the governing equation becomes second order in both
space and time, and liable to fictional numerical oscillations at dis-
continuities. To deal with this mathematical complexity, research-
ers have used various mathematical techniques [3–27], like
analytic approach with hybrid Green’s function [9], space-time dis-
continuous Galerkin method [10], kinetic flux vector splitting
scheme [11], numerical solutions of the Laplace transforms in time
[12] and analytical approaches based on other intergral transforms
[13–14], multiple scale technique [15], lattice Boltzmann method
(LBM) [16]. Apart from the study of HHC in a planar and rectangu-
lar geometry [10–16], cylindrical and spherical geometry have also
been studied [9,17–22].

In recent years, there has been a surge in the application of the
LBM in the analyses of a wide range of problems in science and
engineering [23]. This surge in interest is owing to the mesoscopic
nature of the LBM. LBM is notably more computationally efficient
than most other available computational techniques. Apart from
being comparatively less expensive both in terms of CPU and
memory requirement, it is also amenable to extensive paralleliza-
tion. Recently, it has also found applications in heat transfer prob-
lems with and without radiation [24–25]. However, as far as its
application to non-Fourier conduction (HHC) is concerned, the
study is scarce. The reported work of Ho et al. [16] and Mishra
et al [24–25], deal with only 1-D planar geometry.

Cylindrical and spherical geometry find many applications in
science and engineering. In these geometry, researchers have stud-
ied the thermal response due to the non-Fourier conduction. More
prominent of these investigations include those by Chen and Chen
[17], Lu et al. [18], Cossali [19], Moosaie [20], and Lin and Chen
[21]. They have used different techniques to analyse the problems.
However, the LBM has not been used to study the HHC in

cylindrical and spherical geometry. This work is thus aimed at
the analysis of non-Fourier heat conduction in both these geometry
using the LBM. In the following section, we derive a non-dimen-
sional form of the governing equation for the general 1-D geome-
try. Following this, the LBM formulation for the analysis of non-
Fourier conduction is presented. Using Chapman–Enskog multi-
scale expansion, the equivalence of the LBM with the HHC equation
is established. LBM formulation is validated next by solving the
same problems using the finite volume method (FVM). Results
are also compared with those available in the literature. The CPU
times and the number of iterations in the LBM and the FVM are
also presented. Conclusions are made at the end.

2. Formulation

When only one space dimension is considered, Eq. (3) can be
written as

C
@q�

@t�
þ q� ¼ �k

@T�

@r�
ð4Þ

In the absence of convection and volumetric radiation, the govern-
ing equation pertaining to heat transfer in 1-D geometry can be
written as

qcp
@T�

@t�
¼ �r� � q� þ g� � � 1

r�n
@ðr�nq�Þ
@r�

þ g� ð5Þ

Substituting for q⁄ from Eq. (4) in Eq. (5), we get

qcp C
@2T�

@t�2
þ @T�

@t�

 !
¼ k

r�n
@

@r�
r�n

@T�

@r�

� �
þ g� ð6Þ

In the aforementioned equations, q is the density, cp is the specific
heat, k is the thermal conductivity, g⁄ is the volumetric heat gener-
ation, and for index n = 0, 1 and 2 the equation pertains to that for
the planar, the cylindrical and the spherical geometry in which
along the coordinate direction, the surface area A / r�n.

In Eq. (6), if in the first term C� @2T�

@t�2

� �� �
, either the thermal lag

(relaxation time) C ¼ a
C2

� �
! 0; or @2T�

@t�2
¼ @ð@T�=@t�Þ

@t�

� �
! 0, Eq. (6) takes

the form which is governed by the Fourier conduction. If C = 0,
there is no time lag between the cause, i.e., the temperature gradi-
ent and effect, i.e., the flow of heat, which means that the effect of
the cause is felt instantaneously.

With non-dimensional time t, distance r, temperature T, heat
flux q and volumetric heat generation g defined as

Nomenclature

A area
cp specific heat
C speed of thermal wave
~ei propagation velocity in the direction i in the lattice
fi particle distribution function in the i direction
f ð0Þi equilibrium particle distribution function in the i direc-

tion
k thermal conductivity
n index for geometry: 0 – planar, 1 – cylindrical and 2 –

spherical
~r position
T non-dimensional temperature
t non-dimensional time

Greek symbols
a thermal diffusivity
h scaled non-dimensional temperature

f scaled non-dimensional time
q density
s relaxation time
C time lag

Subscripts
ref reference value
o initial value

Superscripts
⁄ dimensional quantities
(n) Nth order term in the Chapman–Enskog expansion
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