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a b s t r a c t

We perform a numerical investigation of the Rayleigh–Bénard convection in supercritical nitrogen in a
shallow enclosure with an aspect ratio of 4. The transient and steady-state fluid behaviors over a wide
range of initial distances to the critical point along the critical isochore are obtained and analyzed in
response to modest homogeneous bottom heating. On account of the fluid layer being extremely thin,
density stratification is notably excluded from consideration herein, which leads to the dominating role
of the Rayleigh criterion in the onset of convection. Following the Boussinesq approximation, we find the
power law scaling relationships over five decades of the Rayleigh number (Ra) for various transient quan-
tities including the exponential growth rate of the mean enstrophy in the cavity and the characteristic
times of the development of convective motion. The correlation of the Nusselt number versus the Ray-
leigh number shows asymptotic features at the two ends of the Ra spectrum, which incidentally corre-
spond to different convection patterns. Under the regime of high Ra, the heat transfer through the
fluid cavity is enhanced by the turbulent bursts of thermal plumes from the boundary layers. On the other
hand, under the regime of low Ra, it is the orderly multicellular flow that moves heat from the bottom of
the layer to the top, which includes a transition from a four-cell structure to a six-cell structure with
decreasing Ra.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Rayleigh–Bénard (RB) convection (heated from below) is among
the very first and most extensively studied systems concerning
hydrodynamic instability [1]. Warmer fluid tends to be pushed up-
ward by buoyancy force, and cooler fluid in turn falls down to take
its place. Once the critical heat rate is reached, sustained motion
arises. Linear stability analysis suggests that two limiting cases ex-
ist as regards the onset of the thermogravitational convection [2].
Under the Boussinesq approximation (BA), mechanical equilibrium
is maintained by dissipative processes as compressibility is largely
neglected except in the Navier–Stokes equation. Under this sce-
nario, convection motion is characterized by the Rayleigh criterion.
On the other hand, when dissipation is outweighed by compress-
ibility, the onset of convection is determined by the Schwarzschild
criterion. Near the liquid–gas critical point (CP), fluid properties
exhibit unusual asymptotic behaviors. Remarkably, the thermal
diffusivity (DT = k/qCP, where k is the thermal conductivity, q is
the fluid density, and CP is the specific heat at constant pressure)
goes to zero and the isobaric thermal expansion coefficient aP

tends to infinity. The theoretical consideration regarding mechan-
ical stability ought to accordingly comprise both the contributions
of compressibility and dissipation. The postulated crossover be-
tween the Rayleigh and Schwarzschild criteria near the CP within
the same space scale [3–5] was confirmed in a supercritical 3He
experiment conducted by Kogan and coworkers [6–8], where
traces of the temperature difference across a flat RB cell were
meticulously measured and recorded for a variety of initial tem-
peratures along the critical isochore and imposed heat rates. (We
note that in a previous experiment on the RB convection in near-
critical SF6 by Assenheimer and Steinberg [9], compressibility-in-
duced deviation from the BA was deemed irrelevant on account
of the fluid layer being extremely thin.) The ensuing theoretical
[10,11] and numerical [12,13] efforts succeeded in reproducing
the main findings of the experiment, which yielded good agree-
ment for most of the results. Nevertheless, marked discrepancies
between the measurements and predictions remain with regard
to the transient data obtained relatively far from the CP. It was
hypothesized that small parasitic thermal noises were responsible
for the difference [14]. Based on such notion, a modified model that
included artificial time-independent thermal fluctuations with
favorable amplitude and spatial periodicity was established, use
of which was shown to result in significant improved agreement
with the experiment [15,16]. A semi-empirical scaling relation
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later was derived to describe the development of convection under
these externally imposed perturbations [17].

Recent numerical studies unveiled more features of the convec-
tive motion. Rare sudden reversal of turbulent wind orientation
(namely, large-scale circulation) more commonly known to occur
at extreme Rayleigh numbers and over a particularly long period
of time [18,19] was found in near-critical fluids under far less
severe circumstances [20,11]. Two-dimensional (2D) and three-
dimensional (3D) simulations identified general characteristics of
the nonequilibrium system: hydrodynamic instability always be-
gins with the collapse of thermal boundary layers, and the subse-
quent transition to fully-developed convection appears chaotic
and lacking in spatial symmetry when very close to the CP
[21,22]. Under certain strictly limited conditions, a reverse transi-
tion to stability of a heated fluid layer could be realized through
crossing the Schwarzschild branch in the marginal stability curve
[23]. Owing to the strong density stratification near the CP, phe-
nomena of geophysical interest could find their scaled-down coun-
terparts in laboratory-scale convection involving supercritical
fluids, which makes it an ideal model to study those large-scale
flows [24].

The vanishing thermal diffusivity and diverging compressibility
near the CP give rise to another interesting critical phenomenon,
the so-called piston effect (PE) [25–27]. The PE, driven by thermoa-

coustic processes, was shown to greatly accelerate thermalization
of highly compressible near-critical fluids under fixed volume
and nonterrestrial conditions [28–30]. The temperature relaxation
in the bulk of the fluid is completed after the PE time sPE = L2/
[DT(c � 1)]2, which amounts to a significant reduction to the ther-
mal diffusion time sD = L2/4DT [14,17]. Here L refers to the charac-
teristic length of the fluid, and c the ratio of the specific heats. The
interaction of the PE and gravity has long attracted attention of
researchers of supercritical fluids [31,32]. In a typical RB configura-
tion, prior to the initiation of macroscopic fluid motion, the tem-
perature distribution is heavily influenced by the PE. Thermal
boundary layers are formed not only along the bottom hot plate,
but near the top cold plate as well, from which thermal plumes
could be generated when the convection threshold is exceeded
[22,33–35]. However, other than indirectly affecting the resulting
flow pattern, the PE was claimed to cause negligible impact on
the fundamental dynamics of the system [2,36].

The aim of the paper is to study the evolution of hydrodynamic
instability in supercritical nitrogen (as an example of near-critical
behaviors) along its critical isochore in a 2D rectangular enclosure,
from the onset of convection to the steady state. The various RB
convection patterns over a wide range of initial distances to the
CP [denoted by the reduced temperature e = (Ti � Tc)/Tc, where
Tc = 126.192 K is the critical temperature] under uniform heating

Nomenclature

a dimensionless wavenumber, kL
A dimensionless quantity, Pi/qic

2

B dimensionless quantity, PijT

c sound velocity (m s�1)
C dimensionless quantity, TiaP

CP specific heat at constant pressure (J kg�1 K�1)
CV specific heat at constant volume (J kg�1 K�1)
DT thermal diffusivity (m2 s�1)
Fr Froude number, P2/Lg
g gravitational acceleration (m s�2)
k wavenumber (m�1)
L characteristic length of the fluid (m)
Ma Mach number, P/c
Nu Nusselt number, qL/kDT
P pressure (Pa)
dP pressure change (Pa), P � Pi

Pr Prandtl number, v/DT

q heat flux at the bottom plate (W/m2)
Ra Rayleigh number, aPgDTL3/v DT

Rac critical Rayleigh number
Re Reynolds number, LP/v = 1
t time (s)
Dt computational timestep (s)
T temperature (K)
dT temperature change (K), T � Ti

DT horizontally averaged vertical temperature difference
across the cavity based on the simulation results (K)

u horizontal velocity (m s�1)
W horizontal length of the cavity (m)
v vertical velocity (m s�1)
v velocity vector (m s�1)
x horizontal space variable (m)
y vertical space variable (m)

Greek symbols
aP isobaric thermal expansion coefficient (K�1)
c ratio of the specific heats, CP/CV

C aspect ratio of the cavity, W/L
dT thickness of the thermal boundary layer (m)
e reduced temperature, (Ti � Tc)/Tc

f bulk viscosity (Pa s)
g shear viscosity (Pa s)
h scale of the temperature difference (K)
jT isothermal compressibility (Pa�1)
k thermal conductivity (W m�1 K�1)
P characteristic fluid velocity (m s�1)
q density (kg m�3)
dq density change (kg m�3), q � qi

sD thermal diffusion timescale (s), L2/4DT

sPE piston effect timescale (s), L2/[DT(c � 1)]2

u exponential growth rate of the enstrophy in the cavity,
as shown in Fig. 8

X enstrophy (s�2)
v kinematic viscosity (m2 s)
U viscous dissipation function

Superscripts

� dimensionless variables
(0) zeroth-order terms in the expansion series in Eqs.

(10)–(14)
(1) first-order terms in the expansion series in Eqs.

(10)–(14)

Subscripts
ad adiabatic temperature gradient
b Boussinesq fluids
c critical point
D diffusion
i initial state
onset onset of convection
p peak
PE piston effect
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