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a b s t r a c t

Using temperature measurements from inside a solid to determine boundary conditions is a common
inverse heat conduction problem. These problems are ill-posed and a robust mathematical solution is
not available. Stochastical search algorithms like genetic algorithm (GA) and particle swarm optimization
(PSO) have been found to be effective in dealing with these problems. However, they require large pop-
ulation size and do not use the gradient information and, therefore, their computational costs are higher
than their gradient based alternatives. This is especially true when using a computationally expensive
method like finite element analysis as the direct solver. A computationally cheaper substitute is using
surrogate models. They construct an approximation to the direct problem using a set of available data
and the underlying physics of the problem. This idea has been employed in this research. The result is
a method that has the stability and effectiveness of evolutionary algorithms with a much lower compu-
tational cost.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

An inverse heat transfer problem is a problem in which the tem-
peratures at some locations inside a domain are known, while one
or some of the boundary or initial conditions, or material proper-
ties are missing. In this research, our focus will be on the case
where we try to find an unknown boundary condition in a heat
conduction problem; however, the developed procedures are easily
applicable to other cases as well. Because the effects of altering the
boundary conditions are generally damped and lagged in the inter-
nal sensors, the problem would be characteristically ill-posed, and
a high level of sensitivity to the measurement errors is observed. In
general, the uniqueness and stability of the solution to an inverse
heat conduction problem (IHCP) are not guaranteed [1]. This ill-
posedness is commonly treated by means of one or a mixture of
some regularization techniques, e.g. Tikhonov regularization [2],
the future information method [1], or the iterative regularization
technique [3].

In the last two decades, various numerical algorithms have been
developed to obtain a reliable inverse heat transfer solution. The
most commonly used methods are the least square regularization
method [1], the sequential function specification approach [3],
the space marching technique [4], conjugate gradient algorithm
[5], steepest descent method [6], the model reduction method
[7], genetic algorithms (GA) [8], artificial neural networks [9],
and particle swarm optimization [10].

One major drawback in using the evolutionary algorithms in in-
verse heat conduction problems is their much higher computa-
tional expense compared to the classical gradient-based
methods. The problem is especially significant when solving large
multi-dimensional problems with transient behavior with many
time steps. Several researchers have tried to find remedies for this
shortcoming. For example, Tian et al. [11] proposed a hybrid meth-
od that combines PSO and conjugate gradient methods to solve the
inverse heat conduction problem. Also, the authors [12] tried to
modify the basic implementation of PSO to achieve faster conver-
gence in inverse heat conduction applications, especially when
multidimensional and transient problems are solved, by using a
sequential implementation instead of a whole domain approach
and incorporating the concept of future time steps to make it more
stable, using a vectorized objective function for the multi-sensor
cases, and borrowing the idea of elite members from genetic algo-
rithms. While the resulting algorithm showed better performance
than the original implementation, it is still slower compared to
the gradient-based algorithms.

Using surrogate models to quickly pre-evaluate the solution is
another way to accelerate evolutionary optimization algorithms.
If we carefully investigate the contribution of different parts of a
stochastical method like GA or PSO to the whole required compu-
tational time, it is clear that a major portion of the time is con-
sumed in the solution of the direct problem, in order to obtain
the value of the objective function. However, in most cases the ex-
act value of the objective function is not required. In such cases,
solving the direct problem using a high-fidelity and expensive sim-
ulator like finite element method is not necessary. As a remedy,
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some researchers have recently used surrogate models [13] instead
of full direct simulations to lower the computational cost of stoch-
astical search algorithms. For example, Praveen and Duvigneau
[13] have used the concept of metamodels and inexact pre-
evaluations to accelerate PSO in the aerodynamic shape
optimization application. Also, Bilicz et al. [14] applied this idea
to eddy current non-destructive evaluation. The work by Frangos
et al. [15] reviews several methods that can be used to reduce
the computational complexity of statistical inverse problems,
including the use of surrogate models.

Considering the success of surrogate models in other areas of
inverse problems, they would be expected to be equally beneficial
in inverse heat conduction problems. Reviewing the literature indi-
cates that there has been limited work in this area [16], and there is
a certain need to explore and examine different variations of
surrogate models in solving real-world inverse heat conduction
problems. In this research, we try to utilize the idea of inexact
pre-evaluations using surrogate models to speed up our developed
GA and PSO algorithm in solving the inverse heat conduction
problem.

2. Direct and inverse formulation

In this study, the finite element method is used to solve the di-
rect (forward) heat conduction problem. First, a brief description of
the direct heat conduction equations and the discretized finite ele-
ment equations is given below for completeness. More detailed ac-
count may be found in Refs. [17,18]. Then, the inverse heat
conduction problem is defined in the form of an objective function.

2.1. Governing equation and boundary conditions

The general governing equation for the 3D conduction heat
transfer problem can be written as
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where T is the temperature, �C; qb is the heat generation per unit vo-
lume, W/m3; kx, ky, and kz are the conductivities in the x-, y-, and z-
directions, respectively, W/m �C; q is the density, kg/m3; cp is the
specific heat, J/kg �C; t is the time, s; and x, y, and z are the Cartesian
coordinates of a point.

The boundary conditions may be one or a combination of the
followings cases: Prescribed temperature (T = Ts(x,y,z, t)), pre-
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2.2. Finite element formulation

We assume an approximation function for the temperature gi-
ven by

TðxÞ ¼ NiðxÞTi ð2Þ

where Ni(x) is the shape function with i varying from one to the
number of nodes per element, the vector x has the components x,
y and z, and Ti are the nodal temperatures. Using a weighted resi-
dual Galerkin procedure, the final finite element equations may
be written as follows:

½C� � f _Teg þ ½Kc� þ ½Kh� þ ½Kr�ð Þ � fTeg

¼ fQgb þ fQgs þ fQgh þ fQgr ð3Þ

where C is the equivalent heat capacity matrix; K is the equivalent
heat conductivity matrix; T and _T are vectors of the nodal tempera-
ture and its derivative with respect to time, respectively; and Q is
the equivalent load vector. Detailed expressions of these matrices
can be found in the literature [17,18], and will not be repeated here.

2.3. Inverse formulation

The boundary inverse heat conduction problem can be formu-
lated as an optimization problem in which we try to minimize
the norm of difference between the measured temperatures ob-
tained from an experiment or a simulated experiment and the
calculated temperatures obtained from a direct solution of the
problem with some guessed boundary conditions. In order to
damp the oscillations in the solution, and make the algorithm
more stable in dealing with noisy measurement data, it is very
common to include more variables in the objective function. A
common choice in inverse heat transfer problems is to use a sca-
lar quantity based on the boundary heat fluxes, with a weighting
parameter a, which is normally called the regularization para-
meter. The regularization term can be related to the values of
heat flux, or their first or second derivatives with respect to time
or space. Based on the previous experience [18], as well as our
own trial of different regularization terms, we choose to use
the heat flux values (zeroth-order regularization). The objective
function then will be

f ðqÞ ¼
XJ

j¼1

XN

i¼1

Ti;meas
j � Ti;calc

j

� �2
þ a

XN

i¼1

qi
j

� �2
 !

ð4Þ

Nomenclature

c0 self-confidence parameter in particle swarm method
c1, c2, c3, c4 acceleration coefficients in particle swarm method
cp specific heat, J/kg �C
g best global solution
h heat transfer coefficient, W/m �C
I improvement in a predicted value in surrogate models
k conductivity, W/m �C
p best solution of a particle
r normally distributed random vector
T temperature, �C
t time, s; student t-test value
v velocity of particles in particle swarm method
x position (value) of a particle in particle swarm method

x, y, z Cartesian coordinates, m

Greek letters
a regularization parameter
b polynomial coefficients in surrogate modeling
D change in a quantity
q density, kg/m3

w radial basis function
x weights in radial basis function surrogate model

Superscripts
calc calculated
meas measured
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