FISEVIER

Contents lists available at SciVerse ScienceDirect

### International Journal of Heat and Mass Transfer

journal homepage: www.elsevier.com/locate/ijhmt



# A mathematical model on lateral temperature profile of buoyant window spill plume from a compartment fire

L.H. Hu<sup>a,\*</sup>, F. Tang<sup>a</sup>, M.A. Delichatsios<sup>b</sup>, K.H. Lu<sup>a</sup>

<sup>a</sup> State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026, China

#### ARTICLE INFO

Article history:
Received 6 September 2011
Received in revised form 12 May 2012
Accepted 18 August 2012
Available online 27 October 2012

Keywords: Compartment fire Spill plume Lateral temperature profile Gaussian model

#### ABSTRACT

A Gaussian-based mathematical model is theoretically brought forward to describe the lateral temperature profile (in the direction normal to the facade wall) of a spill buoyant plume from window of a compartment fire. The model is built up physically based on that this buoyant plume is conceptually produced by a rectangular fire source with characteristic side dimensions of  $\ell_1$  (beside wall, physical length scale related to the effective area of the outflow) and  $\ell_2$  (normal to wall, physical length scale representing the length after which the outflow turns from horizontal to vertical due to buoyancy) sitting beside an adiabatic façade wall at the neutral plane height of the window. A deduced length scale, by accounting for the entrainment of air mass flow rate into the plume from the non-constrained sides, is brought forward to characterize the effective plume thickness in the direction normal to the façade wall, which will be used in the Gaussian profile function. Experiments are carried out in an experimental device to validate the model developed for six different windows. Results show that the length scale proposed for describing the effective plume thickness can successfully collapse the experimental data of different total heat release rates for various window geometries, and the proposed Gaussian-based model can predict the lateral temperature profile measurements. Furthermore, an exponential function is proposed for the parameter  $\beta$  in the Gaussian profile of such a spill plume in relation to the window aspect ratio (H/W).

© 2012 Elsevier Ltd. All rights reserved.

#### 1. Introduction

Buoyant fire plume characteristics have been studied for decades as an important aspect of fundamental fire research [1–8], which can be described as a vertically rising hot gas column driven by the combusting flame where the buoyancy-induced heat and mass transportation is the key mechanism. These characteristics include entrainment rate and mass flow rate, flame height, vertical variation of temperature and uprising velocity, as well as the radial (horizontal) profile of temperature and velocity. For a free-standing axis-symmetric fire plume, classical Gaussian profile approximation had been well used based on the measurements of Quintiere and Grove [2] and Rouse et al. [3], and is commonly deemed as an adequate description method for normalized radial temperature profile in the vertical center plane of the plume region above the flame

$$\frac{T - T_{\infty}}{T_{\text{max}} - T_{\infty}} = \exp\left\{-\beta \left[\frac{r}{b(z)}\right]^{2}\right\} \tag{1}$$

where T is temperature at radial distance r from the center line of the plume,  $T_{\rm max}$  implies maximum or centerline temperature, and the effective plume radius b(z) is a function of z due to the entrainment of fresh ambient air into the buoyant plume by turbulence, resulting in an expansion of plume cross-sectional size with height. Morton et al. [4] and Steward [5] have established similarity solutions for an idealized axis-symmetric point source and two-dimensional strip fire plumes. Yokoi [6] have measured the vertical and radial temperature profile of free buoyant plume produced by point and line fire source.

This paper studies another special buoyant plume, which is issued from the window of an under-ventilated fire compartment, and attach to the outside façade wall [6,9,10]. It is the major cause of the floor-to-floor fire spread, which will result in big threaten to building and even urban fire safety. For such a spill plume issued from the window and attached to the façade wall, the entrainment from the wall side is constrained. And at the same time, it has initial horizontal momentum. These characteristics make it quite different from both the free-standing fire plume which has no wall constrain effect to the entrainment (nor initial horizontal momentum), and the wall plume which has wall constrain effect but no initial horizontal momentum. Yokoi [6] has carried out the first and most basic research on such spill buoyant plume

b FireSERT, School of Built Environment and Built Environment Research Institute, University of Ulster, Newtownabbey BT38 8GQ, Ireland

<sup>\*</sup> Corresponding author. Tel.: +86 551 3606446; fax: +86 551 3601669. E-mail address: hlh@ustc.edu.cn (L.H. Hu).

#### Nomenclature $T_{\infty}$ $\Delta T$ area of the window (m<sup>2</sup>) ambient temperature (K) Α b effective radius of free plume (m) temperature rise above the ambient (K) *с*<sub>р</sub> Н specific heat of air at constant pressure (kJ/(kg K)) $\Delta T_{aw}$ maximum temperature rise above the ambient at adiaheight of the window (m) batic wall surface (K) buoyant convection strength of the spill plume (kW) uprising velocity of the plume (m/s) $J_0$ 11 characteristic length scale, $\ell_1 = (A\sqrt{H})^{2/5}$ W width of the window (m) $\ell_1$ characteristic length scale, $\ell_2 = (AH^2)^{1/4}$ $\ell_2$ Z vertical height (m) effective characteristic thickness of the spill plume (m) L $Z_n$ neutral plane height of the window (m) $\dot{m}_a$ air mass inflow rate into the compartment through the virtual origin (m) $z_0$ window (kg/s) $\dot{m}_e$ air entrainment mass flow rate into the plume (kg/s) Greek symbols total convective buoyancy release rate outside the air density (kg/m<sup>3</sup>) Q $ho_{\infty}$ window (kW) density of plume gas at height z (kg/m<sup>3</sup>) ρ excess heat release rate (kW) density of hot gas when issuing out of the window $\rho_F$ dimensionless total heat release rate normalized by $(kg/m^3)$ characteristic length scale $\ell_1(\dot{Q}^*_{conv,\ell_1})$ α entrainment coefficient maximum or centerline temperature (K) $T_{\text{max}}$ β Gaussian profile constant

characteristics for over-ventilated compartment fires. Dimensionless vertical temperature distribution along the trajectory axes of the plume is correlated experimentally. Himoto et al. [11,12], Ohmiya et al. [13,14] and Yamaguchi and Tanaka et al. [15] have developed a model to predict the trajectory of window flame ejected from a fire compartment, based on reduced scale experiments. Flame height has also been investigated with models developed by, e.g., Oleszkiewicz [16], Klopovic and Turan [17,18], Lee [19], and Lee et al. [20]. However, although there are already some earlier works on the quantitative vertical temperature distribution along the plume axes [6,9,17,18] and qualitative reports on two dimensional temperature distribution pattern outside the window [11,15], there is still no quantitative works reported on a model to describe the horizontally lateral temperature profile for such spill plumes. In contrast to the free fire plume, the function of b(z)and the value of  $\beta$  in Eq. (1) should be re-found for such spill fire plume due to their inherent difference in entrainment and plume shape.

In this paper, a mathematical model is developed based on the Gaussian profile approximation to describe the lateral temperature distribution in the direction normal to the façade wall, for such buoyant plumes spilled out of the window of a compartment fire. In considering the Gaussian profile model, the variation of effective lateral thickness of the spill plume with height is deduced by accounting for the air entrainment mass flow rate contribution from the un-constrained sides. Experiments are further carried out to validate the model. The constant  $\beta$  in the Gaussian profile model for such spill plume is also discussed.

Following the introduction, the mathematical model development are described in Section 2, the experimental validation and discussion in Section 3 and the concluding remarks are summarized in Section 4.

## 2. A mathematical lateral temperature profile model based on Gaussian approximation

As shown in Fig. 1, the buoyant plume spilled out of the window can be physically deemed [20] as produced by a rectangular fire with side dimensions of  $\ell_1$  (beside wall, physically being length scale related to the effective area of the outflow) and  $\ell_2$  (normal to wall, physically being length scale represented the length after which the flow turns from horizontal to vertical due to buoyancy) sitting beside the façade wall at the neutral plane height of the window with a constant buoyancy convection of  $J_0$ . Here, it is assumed that the cross section area of the spill plume above the virtual fire source and flame (the plume stays attached or after re-attachment) can be reasonably approximated by a rectangular shape and that the aspect ratio of the rectangular is preserved. However, the horizontal width (in the lateral direction) of the fire source is determined by the characteristic length scale of  $\ell_1$ , and its length (parallel to the façade wall) by the characteristic length scale of  $\ell_2$  [20].

$$\ell_1 = (AH^{1/2})^{2/5}, \quad \ell_2 = (AH^2)^{1/4}$$
 (2)

With the rising of the plume, the air mass entrainment into the plume makes the horizontal plume size to increase with height. Thus, the correlation of  $\ell_x$  with z needs to be established for determining parameter profiles across the thickness of the spill plume in the direction normal to the wall.

It is the buoyancy-induced turbulent entrainment transportation of fresh air mass flow into the buoyant plume that makes the value of  $\ell_x$  to increase with z. The physical mechanism of such entrainment can be assumed to be similar to that of a free fire plume. The entrainment comes from all sides of the plume perimeter except that bounded by the façade wall:

**Table 1** Summary of experimental scenarios.

| Test series | Window (m) |       | Total heat release rate (HRR) / equivalent full-scale HRR (scale factor is 1:4) (kW) |            |            |            |            |
|-------------|------------|-------|--------------------------------------------------------------------------------------|------------|------------|------------|------------|
|             | Height     | Width |                                                                                      |            |            |            |            |
| 1           | 0.20       | 0.30  | 128.3/4106                                                                           | 140.5/4496 | 152.7/4886 | 165.0/5280 | 177.2/5670 |
| 2           | 0.25       | 0.25  | 146.6/4691                                                                           | 158.8/5082 | 171.1/5475 | 183.3/5866 | 195.5/6256 |
| 3           | 0.35       | 0.35  | 213.8/6842                                                                           | 226.1/7235 | 232.2/7430 | 238.3/7626 | 244.4/7821 |
| 4           | 0.40       | 0.20  | 177.2/5670                                                                           | 189.4/6061 | 201.6/6451 | 213.8/6842 | 220.0/7040 |
| 5           | 0.30       | 0.20  | 152.7/4886                                                                           | 165.0/5280 | 177.2/5670 | 189.4/6061 | 195.5/6256 |
| 6           | 0.20       | 0.40  | 165.0/5280                                                                           | 177.2/5670 | 183.3/5866 | 189.4/6061 | 195.5/6256 |

### Download English Version:

# https://daneshyari.com/en/article/658801

Download Persian Version:

https://daneshyari.com/article/658801

Daneshyari.com