Chemical Engineering Science 185 (2018) 182-208

Contents lists available at ScienceDirect

Chemical Engineering Science

journal homepage: www.elsevier.com/locate/ces

Review

Assessment of separation efficiency modeling and visualization approaches pertaining to flow and mixing patterns on distillation trays

CHEMICAL

ENGINEERING SCIENCE

Vineet Vishwakarma^{a,b}, Markus Schubert^{a,*}, Uwe Hampel^{a,b}

^a Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics, Bautzner Landstraße 400, 01328 Dresden, Germany ^b Technische Universität Dresden, AREVA Endowed Chair of Imaging Techniques in Energy and Process Engineering, 01062 Dresden, Germany

HIGHLIGHTS

- Flow and mixing patterns on distillation trays strongly dictate their efficiency.
- Existing experimental and CFD approaches for tray flow visualization are reviewed.
- The existing mathematical models for tray efficiency prediction are examined.
- A strategy on how to extract the fluid dynamics data from experiments is discussed.
- Tray efficiency predictions using the data extracted from experiments are shown.
- Hybrid (CFD and efficiency prediction) models could be used together in the future.

ARTICLE INFO

Article history: Received 11 September 2017 Received in revised form 15 March 2018 Accepted 27 March 2018 Available online 30 March 2018

Keywords: Distillation tray Tray efficiency Flow and mixing patterns CFD Experiments Flow maldistribution

ABSTRACT

Distillation columns are essential to chemical process industries, and most of them are fitted with crossflow trays due to their versatility. Since these columns are expensive in terms of cost and energy consumption, an accurate determination of their separation efficiency is a prerequisite to optimization of their performance by design modification and revamping. This would further reduce the extra travs, added to account for the uncertainties, during the column design. There have been several attempts in the past to understand the nature of liquid mixing and flow patterns on the trays through experiments and CFD simulations, and to relate them with their separation efficiency through CFD, empirical and theoretical models. The present work aims at reviewing the experimental and the simulational studies accomplished to characterize the flow and the mixing patterns on column trays. In particular, a comprehensive review of the existing theoretical efficiency prediction models along with the critical analysis of their strengths and weaknesses is presented. The dependence of the tray efficiency on system and flow properties is also discussed. In addition, a concise strategy on how to process and utilize the experimental data in tandem with mathematical models is proposed. The future of the tray efficiency modeling is anticipated to feature hybrid approaches, i.e. using theoretical models supplemented with fluid dynamics information from experimentally validated CFD models. Thus, knowledge of the existing theoretical approaches is imperative for their improvement and development of the new ones for better tray efficiency predictions.

© 2018 Elsevier Ltd. All rights reserved.

* Corresponding author. *E-mail address*: m.schubert@hzdr.de (M. Schubert).

Nomenclature

Л	cross-sectional area of froth perpendicular to the flow direction (m^2)	x_m^*	liquid composition in equilibrium with vapor leaving
٨	unection (iii) bubbling or performed area of the tray (m^2)		$\frac{1}{2} \frac{1}{2} \frac{1}$
A _b	slope of the VLE line (x_{m-1}	composition of liquid entering the tray $(-)$
D C (t)	slope of the VLE line (-)	$\mathbf{X}(\mathbf{Z})$	space mean composition of figure at point $2(-)$
$C_{in}(l)$	WMS) inlet (mol/m ³)	У	in the vapor phase $(-)$
$C_{out}(t)$	time-dependent tracer concentration at the tray (or WMS) outlet (mol/m ³)	y'	composition (mole fraction) of the volatile component in the vanor phase in the side mixers ()
c(t)	time_dependent tracer concentration (mol/m ³)	17	composition of vapor leaving the tray $(-)$
	constants in Appendix P (Ут *	composition of vapor in equilibrium with liquid leaving
ι_1, ι_2	trav diameter (m)	y_m	the tray (
D	(a) (a) (a) (a) (a) (a) (a) (a) (a) (a)		(i) = (i) + (i)
D_E		y_{in}	composition of vapor entering the tray (–)
E_{ML}	liquid-side Murphree tray efficiency (–)	y_p	composition of vapor at point p on the tray $(-)$
E_{MV}	vapor- or gas-side Murphree tray efficiency (–)	y_p^*	composition of vapor in equilibrium with liquid at point
E _o	overall column efficiency (–)		p on the tray (–)
E _{OG}	vapor- or gas-side point efficiency (–)	y_2	composition of vapor leaving the froth element in the
f(t)	residence time distribution function (s^{-1})	_	AIChE model (–)
G	gas flow rate (kmol/s)	Z_1	flow path length (m)
G'	gas flow rate per tray bubbling area (kmol/(m²·s))	Ζ	distance from inlet weir in the flow direction (m)
h_F	froth height (m)	Z'	normalized distance from inlet weir in the flow direc-
k	number of channels in Stichlmair's model $(-)$		tion $(= z/D)$ (-)
Κ	diffusion coefficient based on the size of the fluid ele-		
	ment in the RTD model (kmol/(m ³ ·s))	Subscrit	pts
L	liquid flow rate (kmol/s)	a	active region on the trav
L'	liquid flow rate per unit weir length (kmol/(m·s))	d	stagnant or dead region on the trav
т	tray number (–)	f	froth
Nac	actual number of trays in the column $(-)$	h	hydraulic
Nea	number of equilibrium stages in the column $(-)$	i	channel index in the multi-channel plug flow model in-
n	number of pools in the flow direction $(-)$	·	dex for main line mixers in the pool cascade model
'n	dimensionless distance normal to the column wall $(-)$	in	inlet
Ре	Péclet number (= $Z_1^2/(D_F \cdot \tau)$) (–)	i	index for pools and side mixers in the mixed stages
Pe	Péclet number denoting the three-dimensional eddy	J	model and the pool cascade model respectively
	mixing $(-)$	m	model and the pool caseade model, respectively
n	arbitrary point on the tray $(-)$	111	
		TT1/J/IT1	
р О	volumetric flow rate of liquid (m^3/s)	mean	inedit of average
р Q Q	volumetric flow rate of liquid (m^3/s)	mean w	w-direction
p Q Q _L q_{z}	volumetric flow rate of liquid (m^3/s) volumetric flow rate of liquid per tray width (m^2/s) normalized slip velocity at the wall $(-)$	w z	w-direction z-direction
p Q Q_L q_s $q(\xi)$	volumetric flow rate of liquid (m^3/s) volumetric flow rate of liquid per tray width (m^2/s) normalized slip velocity at the wall $(-)$ normalized velocity profile function $(-)$	meun W Z	w-direction z-direction
$p \\ Q \\ Q_L \\ q_s \\ q(\xi) \\ R(t)$	volumetric flow rate of liquid (m^3/s) volumetric flow rate of liquid per tray width (m^2/s) normalized slip velocity at the wall $(-)$ normalized velocity profile function $(-)$ response function (s^{-1})	meun w z Supersc	<i>w</i> -direction <i>z</i> -direction
p Q Q_L q_s $q(\xi)$ $R(t)$ r_1 r_2	volumetric flow rate of liquid (m^3/s) volumetric flow rate of liquid per tray width (m^2/s) normalized slip velocity at the wall $(-)$ normalized velocity profile function $(-)$ response function (s^{-1}) roots of the differential equation in Appendix B $(-)$	mean w z Supersc *	<i>w</i> -direction <i>z</i> -direction <i>ript</i> Equilibrium
$p \\ Q \\ Q_L \\ q_s \\ q(\xi) \\ R(t) \\ r_1, r_2 \\ s$	volumetric flow rate of liquid (m^3/s) volumetric flow rate of liquid per tray width (m^2/s) normalized slip velocity at the wall $(-)$ normalized velocity profile function $(-)$ response function (s^{-1}) roots of the differential equation in Appendix B $(-)$ non-dimensional distance in the flow direction from the	mean w z Supersc *	<i>w</i> -direction <i>z</i> -direction <i>ript</i> Equilibrium
$p \\ Q \\ Q_L \\ q_s \\ q(\xi) \\ R(t) \\ r_1, r_2 \\ s$	volumetric flow rate of liquid (m^3/s) volumetric flow rate of liquid (m^3/s) normalized slip velocity at the wall $(-)$ normalized velocity profile function $(-)$ response function (s^{-1}) roots of the differential equation in Appendix B $(-)$ non-dimensional distance in the flow direction from the inlet weir $(-)$	w z Supersc * Greek la	w-direction z-direction fipt Equilibrium
$p Q Q_L q_s q(\xi) R(t) r_1, r_2 s T$	volumetric flow rate of liquid (m^3/s) volumetric flow rate of liquid per tray width (m^2/s) normalized slip velocity at the wall $(-)$ normalized velocity profile function $(-)$ response function (s^{-1}) roots of the differential equation in Appendix B $(-)$ non-dimensional distance in the flow direction from the inlet weir $(-)$	mean w z Supersc * Greek la β	w-direction z-direction fipt Equilibrium etters fraction of liquid that circulates between main line mix-
$p \\ Q \\ Q_L \\ q_s \\ q(\xi) \\ R(t) \\ r_1, r_2 \\ s \\ T \\ t$	volumetric flow rate of liquid (m^3/s) volumetric flow rate of liquid (m^3/s) normalized slip velocity at the wall $(-)$ normalized velocity profile function $(-)$ response function (s^{-1}) roots of the differential equation in Appendix B $(-)$ non-dimensional distance in the flow direction from the inlet weir $(-)$ parameter used in Appendix A $(-)$ time (s)	mean w z Supersc * Greek la β	w-direction z-direction fipt Equilibrium etters fraction of liquid that circulates between main line mix- er and side mixer (-)
$p \\ Q \\ Q_L \\ q_s \\ q(\xi) \\ R(t) \\ r_1, r_2 \\ s \\ T \\ t \\ U$	volumetric flow rate of liquid (m^3/s) volumetric flow rate of liquid per tray width (m^2/s) normalized slip velocity at the wall $(-)$ normalized velocity profile function $(-)$ response function (s^{-1}) roots of the differential equation in Appendix B $(-)$ non-dimensional distance in the flow direction from the inlet weir $(-)$ parameter used in Appendix A $(-)$ time (s)	mean w z Supersc * Greek la β	w-direction z-direction ript Equilibrium etters fraction of liquid that circulates between main line mix- er and side mixer (–) empirical fitting parameter in the pool cascade model
$p = Q = Q_L$ $q_s = q(\xi)$ $R(t)$ r_1, r_2 s T t U V_s	volumetric flow rate of liquid (m^3/s) volumetric flow rate of liquid per tray width (m^2/s) normalized slip velocity at the wall $(-)$ normalized velocity profile function $(-)$ response function (s^{-1}) roots of the differential equation in Appendix B $(-)$ non-dimensional distance in the flow direction from the inlet weir $(-)$ parameter used in Appendix A $(-)$ time (s) parameter used in Appendix A $(-)$	mean w z Supersc * Greek la β	w-direction <i>z</i> -direction <i>tipt</i> Equilibrium <i>etters</i> fraction of liquid that circulates between main line mix- er and side mixer (–) empirical fitting parameter in the pool cascade model (–)
$p = Q = Q_L = Q_$	volumetric flow rate of liquid (m^3/s) volumetric flow rate of liquid per tray width (m^2/s) normalized slip velocity at the wall $(-)$ normalized velocity profile function $(-)$ response function (s^{-1}) roots of the differential equation in Appendix B $(-)$ non-dimensional distance in the flow direction from the inlet weir $(-)$ parameter used in Appendix A $(-)$ time (s) parameter used in Appendix A $(-)$ average froth velocity (m/s) gas velocity (m/s)	mean w z Supersc * Greek la β β _o γ	<i>w</i> -direction <i>z</i> -direction <i>ript</i> Equilibrium <i>etters</i> fraction of liquid that circulates between main line mix- er and side mixer (–) empirical fitting parameter in the pool cascade model (–) parameter used in the plug flow model called as similar-
$p \\ Q \\ Q_L \\ q_s \\ q(\xi) \\ R(t) \\ r_1, r_2 \\ s \\ T \\ t \\ U \\ V_f \\ V_G \\ W$	volumetric flow rate of liquid (m^3/s) volumetric flow rate of liquid per tray width (m^2/s) normalized slip velocity at the wall $(-)$ normalized velocity profile function $(-)$ response function (s^{-1}) roots of the differential equation in Appendix B $(-)$ non-dimensional distance in the flow direction from the inlet weir $(-)$ parameter used in Appendix A $(-)$ time (s) parameter used in Appendix A $(-)$ average froth velocity (m/s) gas velocity (m/s) weir length (m)	mean w z Supersc * Greek la β β _o γ	w-direction z-direction ript Equilibrium etters fraction of liquid that circulates between main line mix- er and side mixer (-) empirical fitting parameter in the pool cascade model (-) parameter used in the plug flow model called as similar- ity ratio, i.e. the ratio of the difference between the va-
$p \\ Q \\ Q_L \\ q_s \\ q(\xi) \\ R(t) \\ r_1, r_2 \\ s \\ T \\ t \\ U \\ V_f \\ V_G \\ W \\ W$	volumetric flow rate of liquid (m^3/s) volumetric flow rate of liquid per tray width (m^2/s) normalized slip velocity at the wall $(-)$ normalized velocity profile function $(-)$ response function (s^{-1}) roots of the differential equation in Appendix B $(-)$ non-dimensional distance in the flow direction from the inlet weir $(-)$ parameter used in Appendix A $(-)$ time (s) parameter used in Appendix A $(-)$ average froth velocity (m/s) gas velocity (m/s) weir length (m)	mean w z Supersc * Greek la β β _o γ	<i>w</i> -direction <i>z</i> -direction <i>ript</i> Equilibrium <i>etters</i> fraction of liquid that circulates between main line mix- er and side mixer (–) empirical fitting parameter in the pool cascade model (–) parameter used in the plug flow model called as similar- ity ratio, i.e. the ratio of the difference between the va- por composition at any point on the tray and its outlet,
$p \\ Q \\ Q_L \\ q_s \\ q(\xi) \\ R(t) \\ r_1, r_2 \\ s \\ T \\ t \\ U \\ V_f \\ V_G \\ W \\ w \\ w$	volumetric flow rate of liquid (m^3/s) volumetric flow rate of liquid (m^3/s) volumetric flow rate of liquid per tray width (m^2/s) normalized slip velocity at the wall $(-)$ normalized velocity profile function $(-)$ response function (s^{-1}) roots of the differential equation in Appendix B $(-)$ non-dimensional distance in the flow direction from the inlet weir $(-)$ parameter used in Appendix A $(-)$ time (s) parameter used in Appendix A $(-)$ average froth velocity (m/s) gas velocity (m/s) weir length (m) distance from the tray centerline perpendicular to the flow direction (m)	mean w z Supersc * Greek la β β _o γ	<i>w</i> -direction <i>z</i> -direction <i>ript</i> Equilibrium <i>etters</i> fraction of liquid that circulates between main line mix- er and side mixer (–) empirical fitting parameter in the pool cascade model (–) parameter used in the plug flow model called as similar- ity ratio, i.e. the ratio of the difference between the va- por composition at any point on the tray and its outlet, on two adjacent trays (–)
$p \\ Q \\ Q_L \\ q_s \\ q(\xi) \\ R(t) \\ r_1, r_2 \\ s \\ T \\ t \\ U \\ V_f \\ V_G \\ W \\ w \\ w'$	volumetric flow rate of liquid (m^3/s) volumetric flow rate of liquid per tray width (m^2/s) normalized slip velocity at the wall $(-)$ normalized velocity profile function $(-)$ response function (s^{-1}) roots of the differential equation in Appendix B $(-)$ non-dimensional distance in the flow direction from the inlet weir $(-)$ parameter used in Appendix A $(-)$ time (s) parameter used in Appendix A $(-)$ average froth velocity (m/s) gas velocity (m/s) weir length (m) distance from the tray centerline perpendicular to the flow direction (m)	mean w z Supersc * Greek la β β _o γ	w-direction z-direction ript Equilibrium etters fraction of liquid that circulates between main line mix- er and side mixer (–) empirical fitting parameter in the pool cascade model (–) parameter used in the plug flow model called as similar- ity ratio, i.e. the ratio of the difference between the va- por composition at any point on the tray and its outlet, on two adjacent trays (–) central tray area with forward flow per total tray area
p Q Q_L q_s $q(\xi)$ R(t) r_1, r_2 s T t U V_f V_G W w w w'	volumetric flow rate of liquid (m^3/s) volumetric flow rate of liquid per tray width (m^2/s) normalized slip velocity at the wall $(-)$ normalized velocity profile function $(-)$ response function (s^{-1}) roots of the differential equation in Appendix B $(-)$ non-dimensional distance in the flow direction from the inlet weir $(-)$ parameter used in Appendix A $(-)$ time (s) parameter used in Appendix A $(-)$ average froth velocity (m/s) gas velocity (m/s) weir length (m) distance from the tray centerline perpendicular to the flow direction (m) normalized distance from the tray centerline perpendic- ular to the flow direction $(-m/D)(-)$	mean w z Supersc * Greek la β β ₀ γ	w-direction z-direction ript Equilibrium etters fraction of liquid that circulates between main line mix- er and side mixer (-) empirical fitting parameter in the pool cascade model (-) parameter used in the plug flow model called as similar- ity ratio, i.e. the ratio of the difference between the va- por composition at any point on the tray and its outlet, on two adjacent trays (-) central tray area with forward flow per total tray area (-)
p Q Q_L q_s $q(\xi)$ R(t) r_1, r_2 s T t U V_f V_G W W W W W	volumetric flow rate of liquid (m ³ /s) volumetric flow rate of liquid per tray width (m ² /s) normalized slip velocity at the wall ($-$) normalized velocity profile function ($-$) response function (s ⁻¹) roots of the differential equation in Appendix B ($-$) non-dimensional distance in the flow direction from the inlet weir ($-$) parameter used in Appendix A ($-$) time (s) parameter used in Appendix A ($-$) average froth velocity (m/s) gas velocity (m/s) weir length (m) distance from the tray centerline perpendicular to the flow direction (m) normalized distance from the tray centerline perpendic- ular to the flow direction ($= w/D$) ($-$)	mean w z Supersc * Greek la β β ₀ γ λ δ	w-direction z-direction ript Equilibrium etters fraction of liquid that circulates between main line mix- er and side mixer (-) empirical fitting parameter in the pool cascade model (-) parameter used in the plug flow model called as similar- ity ratio, i.e. the ratio of the difference between the va- por composition at any point on the tray and its outlet, on two adjacent trays (-) central tray area with forward flow per total tray area (-) parameter used in the AIChE model (-)
$p = p = Q = Q_L = q_s = q(\xi)$ $R(t) = r_1, r_2 = s$ $T = t = U = V_f = V_G = W$ $W = W = W$ $W' = X = X$	volumetric flow rate of liquid (m ³ /s) volumetric flow rate of liquid per tray width (m ² /s) normalized slip velocity at the wall ($-$) normalized velocity profile function ($-$) response function (s ⁻¹) roots of the differential equation in Appendix B ($-$) non-dimensional distance in the flow direction from the inlet weir ($-$) parameter used in Appendix A ($-$) time (s) parameter used in Appendix A ($-$) average froth velocity (m/s) gas velocity (m/s) weir length (m) distance from the tray centerline perpendicular to the flow direction (m) normalized distance from the tray centerline perpendic- ular to the flow direction ($= w/D$) ($-$) parameter used in Appendix B ($-$)	mean w z Supersc * Greek la β β _o γ δ η θ	w-direction z-direction ript Equilibrium etters fraction of liquid that circulates between main line mix- er and side mixer (-) empirical fitting parameter in the pool cascade model (-) parameter used in the plug flow model called as similar- ity ratio, i.e. the ratio of the difference between the va- por composition at any point on the tray and its outlet, on two adjacent trays (-) central tray area with forward flow per total tray area (-) parameter used in the AIChE model (-) non-dimensional time (= t/τ) (-)
$\begin{array}{c} p\\ Q\\ Q_L\\ q_s\\ q(\xi)\\ R(t)\\ r_1, r_2\\ s\\ T\\ t\\ U\\ V_f\\ V_G\\ W\\ w\\ w\\ w\\ w\\ x\\ x\\ x \end{array}$	volumetric flow rate of liquid (m ³ /s) volumetric flow rate of liquid per tray width (m ² /s) normalized slip velocity at the wall ($-$) normalized velocity profile function ($-$) response function (s ⁻¹) roots of the differential equation in Appendix B ($-$) non-dimensional distance in the flow direction from the inlet weir ($-$) parameter used in Appendix A ($-$) time (s) parameter used in Appendix A ($-$) average froth velocity (m/s) gas velocity (m/s) weir length (m) distance from the tray centerline perpendicular to the flow direction (m) normalized distance from the tray centerline perpendic- ular to the flow direction ($= w/D$) ($-$) parameter used in Appendix B ($-$) composition (mole fraction) of the volatile component in the line ind paper ($-$)	mean w z Supersc * Greek la β β _o γ δ η θ λ	w-direction z-direction ript Equilibrium etters fraction of liquid that circulates between main line mix- er and side mixer (-) empirical fitting parameter in the pool cascade model (-) parameter used in the plug flow model called as similar- ity ratio, i.e. the ratio of the difference between the va- por composition at any point on the tray and its outlet, on two adjacent trays (-) central tray area with forward flow per total tray area (-) parameter used in the AIChE model (-) non-dimensional time (= t/τ) (-) stripping factor (-)
$p = p = Q = Q_L = Q_L = Q_R(\xi) = R(t) = R($	volumetric flow rate of liquid (m ³ /s) volumetric flow rate of liquid per tray width (m ² /s) normalized slip velocity at the wall ($-$) normalized velocity profile function ($-$) response function (s ⁻¹) roots of the differential equation in Appendix B ($-$) non-dimensional distance in the flow direction from the inlet weir ($-$) parameter used in Appendix A ($-$) time (s) parameter used in Appendix A ($-$) average froth velocity (m/s) gas velocity (m/s) weir length (m) distance from the tray centerline perpendicular to the flow direction (m) normalized distance from the tray centerline perpendic- ular to the flow direction ($= w/D$) ($-$) parameter used in Appendix B ($-$) composition (mole fraction) of the volatile component in the liquid phase ($-$)	mean w z Supersc * Greek la β β _o γ δ η θ λ ξ	w-direction z-direction ript Equilibrium etters fraction of liquid that circulates between main line mix- er and side mixer (-) empirical fitting parameter in the pool cascade model (-) parameter used in the plug flow model called as similar- ity ratio, i.e. the ratio of the difference between the va- por composition at any point on the tray and its outlet, on two adjacent trays (-) central tray area with forward flow per total tray area (-) parameter used in the AIChE model (-) non-dimensional time (= t/τ) (-) stripping factor (-) non-dimensional distance from the tray centerline
$p \\ Q \\ Q_L \\ q_s \\ q(\xi) \\ R(t) \\ r_1, r_2 \\ s \\ T \\ t \\ U \\ V_f \\ V_G \\ W \\ w \\ w' \\ X \\ x \\ x'$	volumetric flow rate of liquid (m ³ /s) volumetric flow rate of liquid per tray width (m ² /s) normalized slip velocity at the wall ($-$) normalized velocity profile function ($-$) response function (s ⁻¹) roots of the differential equation in Appendix B ($-$) non-dimensional distance in the flow direction from the inlet weir ($-$) parameter used in Appendix A ($-$) time (s) parameter used in Appendix A ($-$) average froth velocity (m/s) gas velocity (m/s) weir length (m) distance from the tray centerline perpendicular to the flow direction (m) normalized distance from the tray centerline perpendic- ular to the flow direction ($= w/D$) ($-$) parameter used in Appendix B ($-$) composition (mole fraction) of the volatile component in the liquid phase ($-$) composition (mole fraction) of the volatile component	mean w z Supersc * Greek la β β _o γ δ η θ λ ζ	w-direction z-direction ript Equilibrium etters fraction of liquid that circulates between main line mix- er and side mixer (-) empirical fitting parameter in the pool cascade model (-) parameter used in the plug flow model called as similar- ity ratio, i.e. the ratio of the difference between the va- por composition at any point on the tray and its outlet, on two adjacent trays (-) central tray area with forward flow per total tray area (-) parameter used in the AIChE model (-) non-dimensional time (= t/τ) (-) stripping factor (-) non-dimensional distance from the tray centerline orthogonal to the flow direction (-)
$p = p = Q = Q_L = Q_L = Q_S = Q(\xi) = R(t) $	volumetric flow rate of liquid (m ³ /s) volumetric flow rate of liquid per tray width (m ² /s) normalized slip velocity at the wall ($-$) normalized velocity profile function ($-$) response function (s ⁻¹) roots of the differential equation in Appendix B ($-$) non-dimensional distance in the flow direction from the inlet weir ($-$) parameter used in Appendix A ($-$) time (s) parameter used in Appendix A ($-$) average froth velocity (m/s) gas velocity (m/s) weir length (m) distance from the tray centerline perpendicular to the flow direction (m) normalized distance from the tray centerline perpendic- ular to the flow direction ($= w/D$) ($-$) parameter used in Appendix B ($-$) composition (mole fraction) of the volatile component in the liquid phase ($-$) composition (mole fraction) of the volatile component in the liquid phase in the side mixers ($-$)	mean w z Supersc * Greek la β β ₀ γ δ η θ λ ζ ζ	w-direction <i>z</i> -direction <i>ript</i> Equilibrium <i>etters</i> fraction of liquid that circulates between main line mix- er and side mixer (-) empirical fitting parameter in the pool cascade model (-) parameter used in the plug flow model called as similar- ity ratio, i.e. the ratio of the difference between the va- por composition at any point on the tray and its outlet, on two adjacent trays (-) central tray area with forward flow per total tray area (-) parameter used in the AIChE model (-) non-dimensional time (= t/τ) (-) stripping factor (-) non-dimensional distance from the tray centerline orthogonal to the flow direction (-) clear liquid density (kmol/m ³)
$p \ Q \ Q_L \ q_s \ q(\xi) \ R(t) \ r_1, r_2 \ s \ T \ t \ U \ V_f \ V_G \ W \ w \ w' \ X \ x \ x' \ x'_e$	volumetric flow rate of liquid (m ³ /s) volumetric flow rate of liquid per tray width (m ² /s) normalized slip velocity at the wall ($-$) normalized velocity profile function ($-$) response function (s ⁻¹) roots of the differential equation in Appendix B ($-$) non-dimensional distance in the flow direction from the inlet weir ($-$) parameter used in Appendix A ($-$) time (s) parameter used in Appendix A ($-$) average froth velocity (m/s) gas velocity (m/s) weir length (m) distance from the tray centerline perpendicular to the flow direction (m) normalized distance from the tray centerline perpendic- ular to the flow direction ($= w/D$) ($-$) parameter used in Appendix B ($-$) composition (mole fraction) of the volatile component in the liquid phase ($-$) composition (mole fraction) of the volatile component in the liquid phase in the side mixers ($-$) liquid composition in equilibrium with the incoming	mean w z Supersc * Greek la β β _o γ δ η θ λ ζ ρ_L ρ _r	w-direction <i>z</i> -direction <i>ript</i> Equilibrium <i>etters</i> fraction of liquid that circulates between main line mix- er and side mixer (-) empirical fitting parameter in the pool cascade model (-) parameter used in the plug flow model called as similar- ity ratio, i.e. the ratio of the difference between the va- por composition at any point on the tray and its outlet, on two adjacent trays (-) central tray area with forward flow per total tray area (-) parameter used in the AIChE model (-) non-dimensional time (= t/τ) (-) stripping factor (-) non-dimensional distance from the tray centerline orthogonal to the flow direction (-) clear liquid density (kmol/m ³) froth density (= volume of liquid/froth volume) (-)
$p \\ Q \\ Q_L \\ q_s \\ q(\xi) \\ R(t) \\ r_1, r_2 \\ s \\ T \\ t \\ U \\ V_f \\ V_G \\ W \\ w \\ w' \\ X \\ x \\ x' \\ x_e^*$	volumetric flow rate of liquid (m ³ /s) volumetric flow rate of liquid per tray width (m ² /s) normalized slip velocity at the wall ($-$) normalized velocity profile function ($-$) response function (s ⁻¹) roots of the differential equation in Appendix B ($-$) non-dimensional distance in the flow direction from the inlet weir ($-$) parameter used in Appendix A ($-$) time (s) parameter used in Appendix A ($-$) average froth velocity (m/s) gas velocity (m/s) weir length (m) distance from the tray centerline perpendicular to the flow direction (m) normalized distance from the tray centerline perpendic- ular to the flow direction ($= w/D$) ($-$) parameter used in Appendix B ($-$) composition (mole fraction) of the volatile component in the liquid phase ($-$) composition (mole fraction) of the volatile component in the liquid phase in the side mixers ($-$) liquid composition in equilibrium with the incoming vapor ($-$)	mean w z Supersc * Greek la β β _o γ δ η θ λ ξ ρ_L ρ_F σ^2	w-direction <i>z</i> -direction <i>ript</i> Equilibrium <i>etters</i> fraction of liquid that circulates between main line mix- er and side mixer (-) empirical fitting parameter in the pool cascade model (-) parameter used in the plug flow model called as similar- ity ratio, i.e. the ratio of the difference between the va- por composition at any point on the tray and its outlet, on two adjacent trays (-) central tray area with forward flow per total tray area (-) parameter used in the AIChE model (-) non-dimensional time (= t/τ) (-) stripping factor (-) non-dimensional distance from the tray centerline orthogonal to the flow direction (-) clear liquid density (kmol/m ³) froth density (= volume of liquid/froth volume) (-) variance of the RTD function (< ²)
$p \ Q \ Q_L \ q_s \ q(\xi) \ R(t) \ r_1, r_2 \ s \ T \ t \ U \ V_f \ V_G \ W \ W \ W \ W' \ X \ x \ x' \ x_e^* \ x_m$	volumetric flow rate of liquid (m ³ /s) volumetric flow rate of liquid per tray width (m ² /s) normalized slip velocity at the wall ($-$) normalized velocity profile function ($-$) response function (s ⁻¹) roots of the differential equation in Appendix B ($-$) non-dimensional distance in the flow direction from the inlet weir ($-$) parameter used in Appendix A ($-$) time (s) parameter used in Appendix A ($-$) average froth velocity (m/s) gas velocity (m/s) weir length (m) distance from the tray centerline perpendicular to the flow direction (m) normalized distance from the tray centerline perpendic- ular to the flow direction ($= w/D$) ($-$) parameter used in Appendix B ($-$) composition (mole fraction) of the volatile component in the liquid phase ($-$) composition (mole fraction) of the volatile component in the liquid phase in the side mixers ($-$) liquid composition in equilibrium with the incoming vapor ($-$)	mean w z Supersc * Greek la β β _o γ δ η θ λ ξ ρ _L ρ _F σ ² τ	w-direction <i>z</i> -direction <i>ript</i> Equilibrium <i>etters</i> fraction of liquid that circulates between main line mix- er and side mixer (-) empirical fitting parameter in the pool cascade model (-) parameter used in the plug flow model called as similar- ity ratio, i.e. the ratio of the difference between the va- por composition at any point on the tray and its outlet, on two adjacent trays (-) central tray area with forward flow per total tray area (-) parameter used in the AIChE model (-) non-dimensional time (= t/τ) (-) stripping factor (-) non-dimensional distance from the tray centerline orthogonal to the flow direction (-) clear liquid density (kmol/m ³) froth density (= volume of liquid/froth volume) (-) variance of the RTD function (s ²) mean residence time of liquid on the tray (s)
$p \ Q \ Q_L \ q_s \ q(\xi) \ R(t) \ r_1, r_2 \ s \ T \ t \ U \ V_f \ V_G \ W \ W \ W' \ X \ x \ x' \ x_e^* \ x_m \ x_{+m}$	volumetric flow rate of liquid (m ³ /s) volumetric flow rate of liquid per tray width (m ² /s) normalized slip velocity at the wall ($-$) normalized velocity profile function ($-$) response function (s ⁻¹) roots of the differential equation in Appendix B ($-$) non-dimensional distance in the flow direction from the inlet weir ($-$) parameter used in Appendix A ($-$) time (s) parameter used in Appendix A ($-$) average froth velocity (m/s) gas velocity (m/s) weir length (m) distance from the tray centerline perpendicular to the flow direction (m) normalized distance from the tray centerline perpendic- ular to the flow direction ($= w/D$) ($-$) parameter used in Appendix B ($-$) composition (mole fraction) of the volatile component in the liquid phase ($-$) composition (mole fraction) of the volatile component in the liquid phase in the side mixers ($-$) liquid composition in equilibrium with the incoming vapor ($-$) composition of liquid leaving the tray ($-$) liquid composition at the inlet weir ($-$)	mean w z Supersc * Greek la β β _o γ δ η θ λ ξ ρ _L ρ _F σ ² τ τ	w-direction <i>z</i> -direction <i>z</i> -direction <i>ript</i> Equilibrium <i>etters</i> fraction of liquid that circulates between main line mix- er and side mixer (–) empirical fitting parameter in the pool cascade model (–) parameter used in the plug flow model called as similar- ity ratio, i.e. the ratio of the difference between the va- por composition at any point on the tray and its outlet, on two adjacent trays (–) central tray area with forward flow per total tray area (–) parameter used in the AIChE model (–) non-dimensional time (= t/τ) (–) stripping factor (–) non-dimensional distance from the tray centerline orthogonal to the flow direction (–) clear liquid density (kmol/m ³) froth density (= volume of liquid/froth volume) (–) variance of the RTD function (s ²) mean residence time of liquid on the tray (s) hydraulic or space time (= volume of the system/volu-
$p \ Q \ Q_L \ q_s \ q(\xi) \ R(t) \ r_1, r_2 \ s \ T \ t \ U \ V_f \ V_G \ W \ W \ W' \ X \ x \ x' \ x_e^* \ x_{m} \ x_{+m} \ x_{m1}$	volumetric flow rate of liquid (m ³ /s) volumetric flow rate of liquid per tray width (m ² /s) normalized slip velocity at the wall (–) normalized velocity profile function (–) response function (s ⁻¹) roots of the differential equation in Appendix B (–) non-dimensional distance in the flow direction from the inlet weir (–) parameter used in Appendix A (–) time (s) parameter used in Appendix A (–) average froth velocity (m/s) gas velocity (m/s) weir length (m) distance from the tray centerline perpendicular to the flow direction (m) normalized distance from the tray centerline perpendic- ular to the flow direction (= w/D) (–) parameter used in Appendix B (–) composition (mole fraction) of the volatile component in the liquid phase (–) composition (mole fraction) of the volatile component in the liquid phase in the side mixers (–) liquid composition in equilibrium with the incoming vapor (–) composition of liquid leaving the tray (–) liquid composition at the inlet weir (–) liquid composition at the inlet weir (–)	mean w z Supersc * Greek la β β ο γ δ η θ λ ζ ρ _L ρ _F σ ² τ τ h	w-direction <i>z</i> -direction <i>z</i> -direction <i>ript</i> Equilibrium <i>etters</i> fraction of liquid that circulates between main line mix- er and side mixer (–) empirical fitting parameter in the pool cascade model (–) parameter used in the plug flow model called as similar- ity ratio, i.e. the ratio of the difference between the va- por composition at any point on the tray and its outlet, on two adjacent trays (–) central tray area with forward flow per total tray area (–) parameter used in the AIChE model (–) non-dimensional time (= t/τ) (–) stripping factor (–) non-dimensional distance from the tray centerline orthogonal to the flow direction (–) clear liquid density (kmol/m ³) froth density (= volume of liquid/froth volume) (–) variance of the RTD function (s ²) mean residence time of liquid on the tray (s) hydraulic or space time (= volume of the system/volu- metric flow rate) (s)
$p Q Q_L q_s q(\xi) R(t) r_1, r_2 s$ $T t U V_f V_G W W$ $W' X X X' X_e^* X_{m1}$	volumetric flow rate of liquid (m ³ /s) volumetric flow rate of liquid per tray width (m ² /s) normalized slip velocity at the wall ($-$) normalized velocity profile function ($-$) response function (s ⁻¹) roots of the differential equation in Appendix B ($-$) non-dimensional distance in the flow direction from the inlet weir ($-$) parameter used in Appendix A ($-$) time (s) parameter used in Appendix A ($-$) average froth velocity (m/s) gas velocity (m/s) weir length (m) distance from the tray centerline perpendicular to the flow direction (m) normalized distance from the tray centerline perpendic- ular to the flow direction ($= w/D$) ($-$) parameter used in Appendix B ($-$) composition (mole fraction) of the volatile component in the liquid phase ($-$) composition (mole fraction) of the volatile component in the liquid phase in the side mixers ($-$) liquid composition in equilibrium with the incoming vapor ($-$) composition of liquid leaving the tray ($-$) liquid composition at the inlet weir ($-$) liquid composition at the inlet weir ($-$) liquid composition at the inlet wein ($-$)	mean w z Supersc * Greek la β β ο γ δ η θ λ ζ ρ _L ρ _F σ ² τ τ _h	w-direction <i>z</i> -direction <i>z</i> -direction <i>ript</i> Equilibrium <i>etters</i> fraction of liquid that circulates between main line mix- er and side mixer (–) empirical fitting parameter in the pool cascade model (–) parameter used in the plug flow model called as similar- ity ratio, i.e. the ratio of the difference between the va- por composition at any point on the tray and its outlet, on two adjacent trays (–) central tray area with forward flow per total tray area (–) parameter used in the AIChE model (–) non-dimensional time (= t/τ) (–) stripping factor (–) non-dimensional distance from the tray centerline orthogonal to the flow direction (–) clear liquid density (kmol/m ³) froth density (= volume of liquid/froth volume) (–) variance of the RTD function (s ²) mean residence time of liquid on the tray (s) hydraulic or space time (= volume of the system/volu- metric flow rate) (s) relative area of the active region in the pool cascade
$p Q Q_L q_s q(\xi) R(t) r_1, r_2 s$ $T t U V_f V_G W W$ W' W W $W' X X X X' X_e^* X_m X_{m1} X_{m2}$	volumetric flow rate of liquid (m^3/s) volumetric flow rate of liquid per tray width (m^2/s) normalized slip velocity at the wall $(-)$ normalized velocity profile function $(-)$ response function (s^{-1}) roots of the differential equation in Appendix B $(-)$ non-dimensional distance in the flow direction from the inlet weir $(-)$ parameter used in Appendix A $(-)$ time (s) parameter used in Appendix A $(-)$ average froth velocity (m/s) gas velocity (m/s) weir length (m) distance from the tray centerline perpendicular to the flow direction (m) normalized distance from the tray centerline perpendic- ular to the flow direction $(= w/D) (-)$ parameter used in Appendix B $(-)$ composition (mole fraction) of the volatile component in the liquid phase $(-)$ composition in equilibrium with the incoming vapor $(-)$ composition of liquid leaving the tray $(-)$ liquid composition at the inlet weir $(-)$ liquid composition at the inlet weir $(-)$ mixing cup average composition of liquid leaving the	mean w z Supersc * Greek la β β_{o} γ δ η θ λ ξ ρ_L ρ_F σ^2 τ τ_h ϕ_a	<i>w</i> -direction <i>z</i> -direction <i>z</i> -direction <i>ript</i> Equilibrium <i>etters</i> fraction of liquid that circulates between main line mix- er and side mixer (–) empirical fitting parameter in the pool cascade model (–) parameter used in the plug flow model called as similar- ity ratio, i.e. the ratio of the difference between the va- por composition at any point on the tray and its outlet, on two adjacent trays (–) central tray area with forward flow per total tray area (–) parameter used in the AIChE model (–) non-dimensional time (= t/τ) (–) stripping factor (–) non-dimensional distance from the tray centerline orthogonal to the flow direction (–) clear liquid density (kmol/m ³) froth density (= volume of liquid/froth volume) (–) variance of the RTD function (s ²) mean residence time of liquid on the tray (s) hydraulic or space time (= volume of the system/volu- metric flow rate) (s) relative area of the active region in the pool cascade model (–)

Download English Version:

https://daneshyari.com/en/article/6588483

Download Persian Version:

https://daneshyari.com/article/6588483

Daneshyari.com