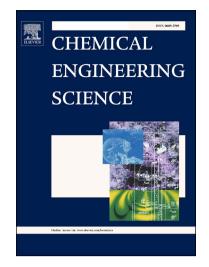
Accepted Manuscript

Micro-PIV measurement and CFD simulation of flow field and swirling strength during droplet formation process in a coaxial microchannel

Qi-Qiang Xiong, Zhuo Chen, Shao-Wei Li, Yun-Dong Wang, Jian-Hong Xu


PII: S0009-2509(18)30228-8

DOI: https://doi.org/10.1016/j.ces.2018.04.022

Reference: CES 14154

To appear in: Chemical Engineering Science

Received Date: 28 December 2017
Revised Date: 28 February 2018
Accepted Date: 10 April 2018

Please cite this article as: Q-Q. Xiong, Z. Chen, S-W. Li, Y-D. Wang, J-H. Xu, Micro-PIV measurement and CFD simulation of flow field and swirling strength during droplet formation process in a coaxial microchannel, *Chemical Engineering Science* (2018), doi: https://doi.org/10.1016/j.ces.2018.04.022

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Micro-PIV measurement and CFD simulation of flow field and swirling strength during droplet formation process in a coaxial microchannel

Qi-Qiang Xiong^{1†}, Zhuo Chen^{1†}, Shao-Wei Li^{2*}, Yun-Dong Wang¹, Jian-Hong Xu^{1*}

¹ The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China

² Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China

Abstract: The liquid-liquid two-phase flow in a coaxial micro-channel was investigated with micro-PIV measurement and computational fluid dynamics (CFD) simulation. The velocity distributions inside and outside of droplet were measured simultaneously. Both experimental and simulated results showed that a pair of symmetrical vortices existed during droplet formation process. In addition, a parameter, swirling strength, was employed to characterize the developing vortices throughout the droplet formation process. The effects of physical properties, such as interfacial tension and viscosity, on fluid flow were also discussed. The results showed that the absolute valued swirling strength increased with the decrease of interfacial tension, while decreased with the increase of continuous phase viscosity. The agreement between the experimental and simulation results in various conditions

 $[\]dagger$ These authors contributed equally to this work.

^{*}Corresponding author: lsw@mail.tsinghua.edu.cn; xujianhong@mail.tsinghua.edu.cn;

Download English Version:

https://daneshyari.com/en/article/6588491

Download Persian Version:

https://daneshyari.com/article/6588491

<u>Daneshyari.com</u>