
Accepted Manuscript

A Solvent 'Squeezing' Strategy to Graft Ethylenediamine on $Cu_3(BTC)_2$ for Highly Efficient CO₂/CO Separation

Ruiqin zhong, Xiaofeng Yu, Wei Meng, Songbai Han, Jia Liu, Yunxing Ye, Changyu Sun, Guangjin Chen, Ruqiang Zou

PII:	\$0009-2509(17)30777-7
DOI:	https://doi.org/10.1016/j.ces.2017.12.040
Reference:	CES 13975
To appear in:	Chemical Engineering Science
Received Date:	21 October 2017
Revised Date:	4 December 2017
Accepted Date:	19 December 2017

Please cite this article as: R. zhong, X. Yu, W. Meng, S. Han, J. Liu, Y. Ye, C. Sun, G. Chen, R. Zou, A Solvent 'Squeezing' Strategy to Graft Ethylenediamine on Cu₃(BTC)₂ for Highly Efficient CO₂/CO Separation, *Chemical Engineering Science* (2017), doi: https://doi.org/10.1016/j.ces.2017.12.040

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

A Solvent 'Squeezing' Strategy to Graft Ethylenediamine on Cu₃(BTC)₂ for Highly Efficient CO₂/CO Separation

Ruiqin zhong,^{a,*} Xiaofeng Yu,^a Wei Meng,^b Songbai Han,^c Jia Liu,^b Yunxing Ye,^a Changyu Sun,^a Guangjin Chen,^a Ruqiang Zou^{b,*}

^a State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249,

China. E-mail: rzhong@cup.edu.cn

^b Department of Materials Science and Engineering, College of Engineering, Peking University,

Beijing 100871, China. E-mail: rzou@pku.edu.cn

^c Neutron Scattering Laboratory, China Institute of Atomic Energy, Beijing 102413, China

Abstract

Highly efficient separation of residual carbon dioxide (CO₂) from syngas, mainly composed of carbon monoxide (CO) and hydrogen (H₂), could not only make its utilization more energetically efficient but also avoid catalysts poisoning in some industrial applications. In the attempts to address this issue, it is acknowledged that CO₂/CO separation is the vital step since H₂ is a nonpolar molecules, difficult to be polarized and could be easily separated from CO₂. Herein, we report a novel strategy to graft basic ethylenediamine (ED) molecules onto porous metal-organic frameworks (MOFs) as solid adsorbents for CO₂/CO separation via solvent 'squeezing' approach, in which Cu₃(BTC)₂ (BTC = 1,3,5-benzenetricarboxylate) MOF was employed as the pristine MOF. Surprisingly, the ED-grafted Cu₃(BTC)₂ shows unprecedented enhancement of CO₂/CO selectivity of 226% at 273 K and 861% at 298 K, respectively, in comparison with the solvent-free Cu₃(BTC)₂. Moreover, despite the large isosteric heats of adsorption of CO₂ on the ED-grafted Cu₃(BTC)₂, it could be easily regenerated at moderate temperature. This work provides an

Download English Version:

https://daneshyari.com/en/article/6588506

Download Persian Version:

https://daneshyari.com/article/6588506

Daneshyari.com